1
|
Pearce E, Majid A, Brown T, Wilsnack C, Rising C, Thompson AS, Shepherd RF, Niknafs A, Werner-Lin A, Gilkey MB, Ribisl KM, Hutson SP, Han PK, Savage SA. A "rotating menu" of medical uncertainty for families affected by telomere biology disorders: A qualitative interview study. SSM. QUALITATIVE RESEARCH IN HEALTH 2024; 6:100486. [PMID: 39554689 PMCID: PMC11563169 DOI: 10.1016/j.ssmqr.2024.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background Medical uncertainty may cause distress and challenge medical decision-making for patients with rare diseases and their caregivers. Few studies have examined the experience and management of medical uncertainty in rare disease and the dynamics of multiple medical uncertainty sources, issues, and management strategies. Objective We explored the experience and management of uncertainty in individuals with telomere biology disorders (TBDs), a set of rare cancer-prone bone marrow failure syndromes, and their caregivers. Design Participants (N=32) in this qualitative-descriptive study were individuals with a TBD (n=17) and/or their caregivers (n=15). We thematically analyzed transcripts to describe the presence and dynamics of medical uncertainty in TBDs using categories from a previously published taxonomy. Results Individuals with TBDs and caregivers described medical uncertainty as a chronic burden embodied amidst a range of interrelated sources and issues. Scientific uncertainty included diagnostic and prognostic ambiguity. Practical uncertainty focused on logistical challenges of building and maintaining medical care teams. Personal uncertainty included difficulty realigning self-identity, goals, and relationship expectations post-diagnosis. Scientific, practical, and personal uncertainty issues were entangled. The rarity of TBDs resulted in limited scientific knowledge, which gave rise to practical and personal uncertainties affecting medical decision-making and relationship formation (e.g., creating trusted care teams where patient knowledge of TBDs may exceed that of clinicians). Participants used multiple strategies for uncertainty management, particularly information-seeking and community-building. However, these management strategies could intensify, rather than resolve, participants' medical uncertainty. Conclusion In TBDs, medical uncertainty manifests as a network of multiple, interrelated, sources and issues, which require evolving management strategies. Researchers must be mindful that complex, synergistic uncertainty networks contribute to psychosocial challenges in TBDs. Additional research is warranted to address scientific uncertainty in TBDs, including clinical manifestations and underlying biology, and to develop psychosocial interventions that recognize and anticipate evolving uncertainty.
Collapse
Affiliation(s)
- Emily Pearce
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alina Majid
- Office of the Associate Director, Healthcare Delivery Research Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Toniya Brown
- Trans-Divisional Research Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine Wilsnack
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Camella Rising
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashley S. Thompson
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rowan Forbes Shepherd
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arman Niknafs
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Allison Werner-Lin
- School of Social Policy and Practice, University of Pennsylvania, Philadelphia, PA 19104, USA, Rockville, MD 20850
| | - Melissa B. Gilkey
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, 302 Rosenau Hall, Chapel Hill, NC 27599-7440, USA
| | - Kurt M. Ribisl
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, 302 Rosenau Hall, Chapel Hill, NC 27599-7440, USA
| | - Sadie P. Hutson
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul K.J. Han
- Behavioral Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, USA
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Chen H, Zhao S. Research progress of RNA pseudouridine modification in nervous system. Int J Neurosci 2024:1-11. [PMID: 38407188 DOI: 10.1080/00207454.2024.2315483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
Recent advances of pseudouridine (Ψ, 5-ribosyluracil) modification highlight its crucial role as a post-transcriptional regulator in gene expression and its impact on various RNA processes. Ψ synthase (PUS), a category of RNA-modifying enzymes, orchestrates the pseudouridylation reaction. It can specifically recognize conserved sequences or structural motifs within substrates, thereby regulating the biological function of various RNA molecules accurately. Our comprehensive review underscored the close association of PUS1, PUS3, PUS7, PUS10, and dyskerin PUS1 with various nervous system disorders, including neurodevelopmental disorders, nervous system tumors, mitochondrial myopathy, lactic acidosis and sideroblastic anaemia (MLASA) syndrome, peripheral nervous system disorders, and type II myotonic dystrophy. In light of these findings, this study elucidated how Ψ strengthened RNA structures and contributed to RNA function, thereby providing valuable insights into the intricate molecular mechanisms underlying nervous system diseases. However, the detailed effects and mechanisms of PUS on neuron remain elusive. This lack of mechanistic understanding poses a substantial obstacle to the development of therapeutic approaches for various neurological disorders based on Ψ modification.
Collapse
Affiliation(s)
- Hui Chen
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Shuang Zhao
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
3
|
Kim Y, Lin J, Epel ES, Carver CS. A Lens on Caregiver Stress in Cancer: Longitudinal Investigation of Cancer-Related Stress and Telomere Length Among Family Caregivers of Adult Patients With Cancer. Psychosom Med 2023; 85:527-534. [PMID: 37260287 PMCID: PMC10524877 DOI: 10.1097/psy.0000000000001220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
OBJECTIVE Family members are typically the primary caregivers of patients with chronic illnesses. Family caregivers of adult relatives with cancer are a fast-growing population, yet the physical consequences of their stress due to the cancer in the family have been poorly understood. This study examined the bidirectional relations of the perceived stress of family caregivers of individuals recently diagnosed with cancer and leukocyte cellular aging indexed by telomere length for 2 years. METHODS Family caregivers ( N = 168; mean age = 51 years, 70% female, 46% Hispanic, 36% spouse to the patient) of patients with colorectal cancer provided psychological data and peripheral blood samples approximately 4 (T1), 12 (T2), and 21 months (T3) after diagnosis. Time-lagged cross-panel modeling was used to test the associations of perceived cancer-related stress and telomere length, controlling for age, sex, and body mass index. RESULTS Cancer-related stress was highest at T1 and decreased by 1 year. Greater cancer-related stress predicted longer telomere length at subsequent assessments for 2 years ( β ≥ 0.911, p ≤ .019). However, telomere length did not change significantly for 2 years overall and did not prospectively predict cancer-related stress over this period. CONCLUSIONS Findings suggest the need to better understand how the perceived stress of colorectal cancer caregivers, which tends to be intense for a relatively short period compared with dementia caregiving, may impact immune cell distributions and telomere length. These findings emphasize the need for further knowledge about psychobiological mechanisms of how cancer caregiving may impact cellular aging.
Collapse
Affiliation(s)
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco
| | - Elissa S. Epel
- Department of Psychiatry, University of California, San Francisco
| | | |
Collapse
|
4
|
Fiesco-Roa MÓ, García-de Teresa B, Leal-Anaya P, van ‘t Hek R, Wegman-Ostrosky T, Frías S, Rodríguez A. Fanconi anemia and dyskeratosis congenita/telomere biology disorders: Two inherited bone marrow failure syndromes with genomic instability. Front Oncol 2022; 12:949435. [PMID: 36091172 PMCID: PMC9453478 DOI: 10.3389/fonc.2022.949435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a complex and heterogeneous group of genetic diseases. To date, at least 13 IBMFS have been characterized. Their pathophysiology is associated with germline pathogenic variants in genes that affect hematopoiesis. A couple of these diseases also have genomic instability, Fanconi anemia due to DNA damage repair deficiency and dyskeratosis congenita/telomere biology disorders as a result of an alteration in telomere maintenance. Patients can have extramedullary manifestations, including cancer and functional or structural physical abnormalities. Furthermore, the phenotypic spectrum varies from cryptic features to patients with significantly evident manifestations. These diseases require a high index of suspicion and should be considered in any patient with abnormal hematopoiesis, even if extramedullary manifestations are not evident. This review describes the disrupted cellular processes that lead to the affected maintenance of the genome structure, contrasting the dysmorphological and oncological phenotypes of Fanconi anemia and dyskeratosis congenita/telomere biology disorders. Through a dysmorphological analysis, we describe the phenotypic features that allow to make the differential diagnosis and the early identification of patients, even before the onset of hematological or oncological manifestations. From the oncological perspective, we analyzed the spectrum and risks of cancers in patients and carriers.
Collapse
Affiliation(s)
- Moisés Ó. Fiesco-Roa
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Maestría y Doctorado en Ciencias Médicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | | | - Paula Leal-Anaya
- Departamento de Genética Humana, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Renée van ‘t Hek
- Facultad de Medicina, Universidad Nacional Autoínoma de Meíxico (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | - Talia Wegman-Ostrosky
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Sara Frías
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| | - Alfredo Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Unidad de Genética de la Nutrición, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| |
Collapse
|
5
|
Multisystemic Manifestations in Rare Diseases: The Experience of Dyskeratosis Congenita. Genes (Basel) 2022; 13:genes13030496. [PMID: 35328050 PMCID: PMC8953471 DOI: 10.3390/genes13030496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
Dyskeratosis congenital (DC) is the first genetic syndrome described among telomeropathies. Its classical phenotype is characterized by the mucocutaneous triad of reticulated pigmentation of skin lace, nail dystrophy and oral leukoplakia. The clinical presentation, however, is heterogeneous and serious clinical complications include bone marrow failure, hematological and solid tumors. It may also involve immunodeficiencies, dental, pulmonary and liver disorders, and other minor complication. Dyskeratosis congenita shows marked genetic heterogeneity, as at least 14 genes are responsible for the shortening of telomeres characteristic of this disease. This review discusses clinical characteristics, molecular genetics, disease evolution, available therapeutic options and differential diagnosis of dyskeratosis congenita to provide an interdisciplinary and personalized medical assessment that includes family genetic counseling.
Collapse
|
6
|
Neurocognitive functioning in long-term survivors of pediatric hematopoietic cell transplantation. Bone Marrow Transplant 2020; 56:873-882. [PMID: 33190144 DOI: 10.1038/s41409-020-01125-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 11/08/2022]
Abstract
Survivors of pediatric hematopoietic cell transplantation (HCT) are at risk for impairment in cognitive and academic function. Most research to date has focused on the first years following transplant, and less is known about the long-term effects. We examined global and specific neurocognitive functioning in long-term (>5 years post HCT) survivors in comparison to both normative data and a sample of demographically similar healthy peers. A comprehensive battery of neurocognitive measures was obtained from 83 long-term survivors and 50 healthy comparisons. Analyses were conducted to assess for differences in neurocognitive functions between survivors, normative means, and healthy comparisons, and to examine the impact of medical and demographic variables on neurocognitive performance. Survivors' performance was within the Average range across most measures, although significantly lower than both test norms and healthy comparisons on several measures. Despite generally intact neurocognitive functioning in the survivor group as a whole, survivors who experienced graft-vs.-host disease demonstrated slower processing speed and weaker verbal learning. Use of total body irradiation was not associated with any performance-based measure of neurocognitive functioning. Although subgroups of patients may be at relatively higher risk of neurocognitive impairment, the long-term neurocognitive impact for most survivors is relatively small.
Collapse
|
7
|
AlSabbagh MM. Dyskeratosis congenita: ein Literaturüberblick. J Dtsch Dermatol Ges 2020; 18:943-968. [PMID: 32985809 DOI: 10.1111/ddg.14268_g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
|
8
|
AlSabbagh MM. Dyskeratosis congenita: a literature review. J Dtsch Dermatol Ges 2020; 18:943-967. [PMID: 32930426 DOI: 10.1111/ddg.14268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/29/2020] [Indexed: 12/26/2022]
Abstract
Dyskeratosis congenita is a rare hereditary disease that occurs predominantly in males and manifests clinically as the classic triad of reticulate hyperpigmentation, nail dystrophy and leukoplakia. It increases the risk of malignancy and other potentially lethal complications such as bone marrow failure, lung and liver diseases. Mutations in 19 genes are associated with dyskeratosis congenita, and a fifth of the pathogenic mutations are found in DKC1, the gene coding for dyskerin. This review aims to address the clinical and genetic aspects of the disease.
Collapse
|
9
|
Bhala S, Best AF, Giri N, Alter BP, Pao M, Gropman A, Baker EH, Savage SA. CNS manifestations in patients with telomere biology disorders. NEUROLOGY-GENETICS 2019; 5:370. [PMID: 31872047 PMCID: PMC6878838 DOI: 10.1212/nxg.0000000000000370] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/23/2019] [Indexed: 12/28/2022]
Abstract
Objective We systematically evaluated CNS manifestations in patients with inherited telomere biology disorders (TBDs) to better understand the clinical and biological consequences of germline aberrations in telomere biology. Methods Forty-four participants with TBDs (31 dyskeratosis congenita, 12 Hoyeraal-Hreidarsson syndrome, and 1 Revesz syndrome) enrolled in an institutional review board-approved longitudinal cohort study underwent detailed clinical assessments, brain MRI, and genetic testing. Lymphocyte telomere length Z-scores were calculated to adjust for age. Results In this cohort, 25/44 (57%) patients with a TBD had at least 1 structural brain abnormality or variant, most commonly cerebellar hypoplasia (39%). Twenty-one patients (48%) had neurodevelopmental disorder or psychomotor abnormality. Twelve had psychiatric diagnoses, including depression and/or anxiety disorders. Other findings such as hypomyelination, prominent cisterna magna, and cavum septum pellucidum were more frequent than in the general population (p < 0.001). Shorter lymphocyte telomere length was associated with an increased number of MRI findings (p = 0.02) and neurodevelopmental abnormalities (p < 0.001). Patients with autosomal recessive or X-linked TBDs had more neurologic findings than those with autosomal dominant disease. Conclusions Structural brain abnormalities and variants are common in TBDs, as are neurologic and psychiatric symptoms. The connection between neurodevelopment and telomere biology warrants future study.
Collapse
Affiliation(s)
- Sonia Bhala
- Clinical Genetics Branch (S.B., N.G., B.P.A., S.A.S.) and Biostatistics Branch (A.F.B.), Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville; Office of the Clinical Director (M.P.), National Institute of Mental Health, National Institutes of Health, Bethesda, MD; Department of Neurology (A.G.), Children's National Medical Center, Washington, DC; and Department of Radiology and Imaging Sciences (E.H.B.), Clinical Center, National Institutes of Health, Bethesda, MD
| | - Ana F Best
- Clinical Genetics Branch (S.B., N.G., B.P.A., S.A.S.) and Biostatistics Branch (A.F.B.), Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville; Office of the Clinical Director (M.P.), National Institute of Mental Health, National Institutes of Health, Bethesda, MD; Department of Neurology (A.G.), Children's National Medical Center, Washington, DC; and Department of Radiology and Imaging Sciences (E.H.B.), Clinical Center, National Institutes of Health, Bethesda, MD
| | - Neelam Giri
- Clinical Genetics Branch (S.B., N.G., B.P.A., S.A.S.) and Biostatistics Branch (A.F.B.), Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville; Office of the Clinical Director (M.P.), National Institute of Mental Health, National Institutes of Health, Bethesda, MD; Department of Neurology (A.G.), Children's National Medical Center, Washington, DC; and Department of Radiology and Imaging Sciences (E.H.B.), Clinical Center, National Institutes of Health, Bethesda, MD
| | - Blanche P Alter
- Clinical Genetics Branch (S.B., N.G., B.P.A., S.A.S.) and Biostatistics Branch (A.F.B.), Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville; Office of the Clinical Director (M.P.), National Institute of Mental Health, National Institutes of Health, Bethesda, MD; Department of Neurology (A.G.), Children's National Medical Center, Washington, DC; and Department of Radiology and Imaging Sciences (E.H.B.), Clinical Center, National Institutes of Health, Bethesda, MD
| | - Maryland Pao
- Clinical Genetics Branch (S.B., N.G., B.P.A., S.A.S.) and Biostatistics Branch (A.F.B.), Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville; Office of the Clinical Director (M.P.), National Institute of Mental Health, National Institutes of Health, Bethesda, MD; Department of Neurology (A.G.), Children's National Medical Center, Washington, DC; and Department of Radiology and Imaging Sciences (E.H.B.), Clinical Center, National Institutes of Health, Bethesda, MD
| | - Andrea Gropman
- Clinical Genetics Branch (S.B., N.G., B.P.A., S.A.S.) and Biostatistics Branch (A.F.B.), Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville; Office of the Clinical Director (M.P.), National Institute of Mental Health, National Institutes of Health, Bethesda, MD; Department of Neurology (A.G.), Children's National Medical Center, Washington, DC; and Department of Radiology and Imaging Sciences (E.H.B.), Clinical Center, National Institutes of Health, Bethesda, MD
| | - Eva H Baker
- Clinical Genetics Branch (S.B., N.G., B.P.A., S.A.S.) and Biostatistics Branch (A.F.B.), Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville; Office of the Clinical Director (M.P.), National Institute of Mental Health, National Institutes of Health, Bethesda, MD; Department of Neurology (A.G.), Children's National Medical Center, Washington, DC; and Department of Radiology and Imaging Sciences (E.H.B.), Clinical Center, National Institutes of Health, Bethesda, MD
| | - Sharon A Savage
- Clinical Genetics Branch (S.B., N.G., B.P.A., S.A.S.) and Biostatistics Branch (A.F.B.), Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville; Office of the Clinical Director (M.P.), National Institute of Mental Health, National Institutes of Health, Bethesda, MD; Department of Neurology (A.G.), Children's National Medical Center, Washington, DC; and Department of Radiology and Imaging Sciences (E.H.B.), Clinical Center, National Institutes of Health, Bethesda, MD
| |
Collapse
|
10
|
Niewisch MR, Savage SA. An update on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol 2019; 12:1037-1052. [PMID: 31478401 DOI: 10.1080/17474086.2019.1662720] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Telomere biology disorders (TBDs) encompass a group of illnesses caused by germline mutations in genes regulating telomere maintenance, resulting in very short telomeres. Possible TBD manifestations range from complex multisystem disorders with onset in childhood such as dyskeratosis congenita (DC), Hoyeraal-Hreidarsson syndrome, Revesz syndrome and Coats plus to adults presenting with one or two DC-related features.Areas covered: The discovery of multiple genetic causes and inheritance patterns has led to the recognition of a spectrum of clinical features affecting multiple organ systems. Patients with DC and associated TBDs are at high risk of bone marrow failure, cancer, liver and pulmonary disease. Recently, vascular diseases, including pulmonary arteriovenous malformations and gastrointestinal telangiectasias, have been recognized as additional manifestations. Diagnostics include detection of very short leukocyte telomeres and germline genetic testing. Hematopoietic cell transplantation and lung transplantation are the only current therapeutic modalities but are complicated by numerous comorbidities. This review summarizes the pathophysiology underlying TBDs, associated clinical features, management recommendations and therapeutic options.Expert opinion: Understanding TBDs as complex, multisystem disorders with a heterogenous genetic background and diverse phenotypes, highlights the importance of clinical surveillance and the urgent need to develop new therapeutic strategies to improve health outcomes.
Collapse
Affiliation(s)
- Marena R Niewisch
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Clinical, epidemiological, and biological evidence raises the possibility that serious mental disorders (SMDs) are associated with accelerated biological aging. To the extent this is true; SMDs should not simply be considered in terms of mental illness or brain dysfunction, but also as 'whole body' and multisystem illnesses, or else as conditions with significant somatic concomitants. RECENT FINDINGS The concept of accelerated biological aging in SMDs is supported by reports of accelerated changes in certain biomarkers normally associated with the aging process. SUMMARY We define and discuss several proposed biological aging markers that have been examined in SMDs, we review the most recent findings, and we conclude with opinions regarding the merits and meanings of these markers, their usefulness in understanding and treating SMDs, and remaining questions and future directions in this area of research.
Collapse
Affiliation(s)
- F. Saverio Bersani
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco (UCSF) School of Medicine, San Francisco, USA
| | - Synthia H. Mellon
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF) School of Medicine, San Francisco, USA
| | - Victor I. Reus
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco (UCSF) School of Medicine, San Francisco, USA
| | - Owen M. Wolkowitz
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco (UCSF) School of Medicine, San Francisco, USA
| |
Collapse
|
12
|
Gillis JC, Chang SC, Wang W, Simon NM, Normand SL, Rosner BA, Blacker D, DeVivo I, Okereke OI. The relation of telomere length at midlife to subsequent 20-year depression trajectories among women. Depress Anxiety 2019; 36:565-575. [PMID: 30958913 PMCID: PMC6548605 DOI: 10.1002/da.22892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/18/2019] [Accepted: 03/13/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Telomeres cap and protect DNA but shorten with each somatic cell division. Aging and environmental and lifestyle factors contribute to the speed of telomere attrition. Current evidence suggests a link between relative telomere length (RTL) and depression but the directionality of the relationship remains unclear. We prospectively examined associations between RTL and subsequent depressive symptom trajectories. METHODS Among 8,801 women of the Nurses' Health Study, depressive symptoms were measured every 4 years from 1992 to 2012; group-based trajectories of symptoms were identified using latent class growth-curve analysis. Multinomial logistic models were used to relate midlife RTLs to the probabilities of assignment to subsequent depressive symptom trajectory groups. RESULTS We identified four depressive symptom trajectory groups: minimal depressive symptoms (62%), worsening depressive symptoms (14%), improving depressive symptoms (19%), and persistent-severe depressive symptoms (5%). Longer midlife RTLs were related to significantly lower odds of being in the worsening symptoms trajectory versus minimal trajectory but not to other trajectories. In comparison with being in the minimal symptoms group, the multivariable-adjusted odds ratio of being in the worsening depressive symptoms group was 0.78 (95% confidence interval, 0.62-0.97; p = 0.02), for every standard deviation increase in baseline RTL. CONCLUSIONS In this large prospective study of generally healthy women, longer telomeres at midlife were associated with significantly lower risk of a subsequent trajectory of worsening mood symptoms over 20 years. The results raise the possibility of telomere shortening as a novel contributing factor to late-life depression.
Collapse
Affiliation(s)
- J. Cai Gillis
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA,,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Shun-Chiao Chang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Wei Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Naomi M. Simon
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA,Department of Psychiatry, NYU School of Medicine, One Park Avenue, New York NY 10016
| | - Sharon-Lise Normand
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA,,Department of Health Care Policy, Harvard Medical School, 180 Longwood Avenue, Boston, MA, 02115, USA
| | - Bernard A. Rosner
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA,,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Deborah Blacker
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Immaculata DeVivo
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Olivia I. Okereke
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA,,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA,,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| |
Collapse
|
13
|
Pańczyszyn A, Boniewska-Bernacka E. Telomeropathies: rare disease syndromes. MEDICAL SCIENCE PULSE 2018. [DOI: 10.5604/01.3001.0012.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Telomeres are located at the end of the chromosomes. They protect chromosomes from fusion and degradation. Every cell division causes a shortening of the telomeres. A special enzymatic complex called telomerase is responsible for maintaining telomere length in intensively dividing cells, such as epithelial cells and bone marrow cells. The enzymatic complex includes the TERT subunit, which has reverse transcriptase activity, and the TERC subunit, which acts as a template. Other important components of telomerase are the proteins that are responsible for structural stability. Telomerase remains active only in the dividing cells of the body. The rate of telomere shortening depends on many factors including age, sex, and comorbidities. Faster shortening of telomeres is caused by gene defects, which have an impact on telomerase action. Collectively, these are called telomeropathies. Common causes of telomeropathies are mutations in the TERT and TERC telomerase genes. Types of telemeropathies include dyskeratosis congenita, idiopathic pulmonary fibrosis, and aplastic anaemia, among others. Clinical manifestations and prognoses depend on the type and quantity of mutated genes. Diagnosis of telomeropathies is often problematic because they present with the same symptoms as other diseases. So far, no effective therapeutic methods have been developed for telomeropathies. A therapeutic method for patients with bone marrow failure may be the transplantation of hematopoietic stem cells. For patients with idiopathic pulmonary fibrosis, treatments include immunosuppressive therapy, lung transplantation, or palliative care. In the future, gene therapy may be an effective treatment strategy for telomeropathies. Lifestyle changes may also have a positive impact on the person. Physical activity combined with a healthy diet rich in antioxidants and unsaturated fatty acids can decrease the oxidative stress levels in cells and lead to a slower shortening of the telomeres.
Collapse
Affiliation(s)
- Anna Pańczyszyn
- Independent Department of Biotechnology and Molecular Biology, Faculty of Natural Sciences and Technology, University of Opole, Poland
| | - Ewa Boniewska-Bernacka
- Independent Department of Biotechnology and Molecular Biology, Faculty of Natural Sciences and Technology, University of Opole, Poland
| |
Collapse
|
14
|
Abstract
Studies of rare and common illnesses have led to remarkable progress in the understanding of the role of telomeres (nucleoprotein complexes at chromosome ends essential for chromosomal integrity) in human disease. Telomere biology disorders encompass a growing spectrum of conditions caused by rare pathogenic germline variants in genes encoding essential aspects of telomere function. Dyskeratosis congenita, a disorder at the severe end of this spectrum, typically presents in childhood with the classic triad of abnormal skin pigmentation, nail dystrophy, and oral leukoplakia, accompanied by a very high risk of bone marrow failure, cancer, pulmonary fibrosis, and other medical problems. In contrast, the less severe end of the telomere biology disorder spectrum consists of middle-age or older adults with just one feature typically seen in dyskeratosis congenita, such as pulmonary fibrosis or bone marrow failure. In the common disease realm, large-scale molecular epidemiology studies have discovered novel associations between illnesses, such as cancer, heart disease, and mental health, and both telomere length and common genetic variants in telomere biology genes. This review highlights recent findings of telomere biology in human disease from both the rare and common disease perspectives. Multi-disciplinary collaborations between clinicians, basic scientists, and epidemiologist are essential as we seek to incorporate new telomere biology discoveries to improve health outcomes.
Collapse
Affiliation(s)
- Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Epel ES, Prather AA. Stress, Telomeres, and Psychopathology: Toward a Deeper Understanding of a Triad of Early Aging. Annu Rev Clin Psychol 2018; 14:371-397. [PMID: 29494257 DOI: 10.1146/annurev-clinpsy-032816-045054] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Telomeres play an important part in aging and show relationships to lifetime adversity, particularly childhood adversity. Meta-analyses demonstrate reliable associations between psychopathology (primarily depression) and shorter telomere length, but the nature of this relationship has not been fully understood. Here, we review and evaluate the evidence for impaired telomere biology as a consequence of psychopathology or as a contributing factor, and the important mediating roles of chronic psychological stress and impaired allostasis. There is evidence for a triadic relationship among stress, telomere shortening, and psychiatric disorders that is positively reinforcing and unfolds across the life course and, possibly, across generations. We review the role of genetics and biobehavioral responses that may contribute to shorter telomere length, as well as the neurobiological impact of impaired levels of telomerase. These complex interrelationships are important to elucidate because they have implications for mental and physical comorbidity and, potentially, for the prevention and treatment of depression.
Collapse
Affiliation(s)
| | - Aric A Prather
- Department of Psychiatry; Center for Health and Community; Aging, Metabolism, and Emotions Center; University of California, San Francisco, California 94118, USA; ,
| |
Collapse
|
16
|
Lindqvist D, Epel ES, Mellon SH, Penninx BW, Révész D, Verhoeven JE, Reus VI, Lin J, Mahan L, Hough CM, Rosser R, Bersani FS, Blackburn EH, Wolkowitz OM. Psychiatric disorders and leukocyte telomere length: Underlying mechanisms linking mental illness with cellular aging. Neurosci Biobehav Rev 2015; 55:333-64. [PMID: 25999120 PMCID: PMC4501875 DOI: 10.1016/j.neubiorev.2015.05.007] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/06/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
Abstract
Many psychiatric illnesses are associated with early mortality and with an increased risk of developing physical diseases that are more typically seen in the elderly. Moreover, certain psychiatric illnesses may be associated with accelerated cellular aging, evidenced by shortened leukocyte telomere length (LTL), which could underlie this association. Shortened LTL reflects a cell's mitotic history and cumulative exposure to inflammation and oxidation as well as the availability of telomerase, a telomere-lengthening enzyme. Critically short telomeres can cause cells to undergo senescence, apoptosis or genomic instability, and shorter LTL correlates with poorer health and predicts mortality. Emerging data suggest that LTL may be reduced in certain psychiatric illnesses, perhaps in proportion to exposure to the psychiatric illnesses, although conflicting data exist. Telomerase has been less well characterized in psychiatric illnesses, but a role in depression and in antidepressant and neurotrophic effects has been suggested by preclinical and clinical studies. In this article, studies on LTL and telomerase activity in psychiatric illnesses are critically reviewed, potential mediators are discussed, and future directions are suggested. A deeper understanding of cellular aging in psychiatric illnesses could lead to re-conceptualizing them as systemic illnesses with manifestations inside and outside the brain and could identify new treatment targets.
Collapse
Affiliation(s)
- Daniel Lindqvist
- Department of Clinical Sciences, Section for Psychiatry, Lund University, Lund, Sweden; Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, USA
| | - Elissa S Epel
- Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, USA
| | - Synthia H Mellon
- Department of OB-GYN and Reproductive Sciences, UCSF School of Medicine, San Francisco, CA, USA
| | - Brenda W Penninx
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Dóra Révész
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Josine E Verhoeven
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Victor I Reus
- Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, CA, USA
| | - Laura Mahan
- Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, USA
| | - Christina M Hough
- Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, USA
| | - Rebecca Rosser
- Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, USA
| | - F Saverio Bersani
- Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, USA; Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Elizabeth H Blackburn
- Department of Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, CA, USA
| | - Owen M Wolkowitz
- Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
17
|
Ridout SJ, Ridout KK, Kao HT, Carpenter LL, Philip NS, Tyrka AR, Price LH. Telomeres, early-life stress and mental illness. ADVANCES IN PSYCHOSOMATIC MEDICINE 2015; 34:92-108. [PMID: 25832516 DOI: 10.1159/000369088] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Telomeres are structures of tandem TTAGGG repeats that are found at the ends of chromosomes and preserve genomic DNA by serving as a disposable buffer to protect DNA termini during chromosome replication. In this process, the telomere itself shortens with each cell division and can consequently be thought of as a cellular 'clock', reflecting the age of a cell and the time until senescence. Telomere shortening and changes in the levels of telomerase, the enzyme that maintains telomeres, occur in the context of certain somatic diseases and in response to selected physical stressors. Emerging evidence indicates that telomeres shorten with exposure to psychosocial stress (including early-life stress) and perhaps in association with some psychiatric disorders. These discoveries suggest that telomere shortening might be a useful biomarker for the overall stress response of an organism to various pathogenic conditions. In this regard, telomeres and their response to both somatic and psychiatric illness could serve as a unifying stress-response biomarker that crosses the brain/body distinction that is often made in medicine. Prospective studies will help to clarify whether this biomarker has broad utility in psychiatry and medicine for the evaluation of responses to psychosocial stressors. The possibility that telomere shortening can be slowed or reversed by psychiatric and psychosocial interventions could represent an opportunity for developing novel preventative and therapeutic approaches.
Collapse
Affiliation(s)
- Samuel J Ridout
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, R.I., USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Khincha PP, Wentzensen IM, Giri N, Alter BP, Savage SA. Response to androgen therapy in patients with dyskeratosis congenita. Br J Haematol 2014; 165:349-57. [PMID: 24666134 DOI: 10.1111/bjh.12748] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
Abstract
Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome and telomere biology disorder characterized by dysplastic nails, reticular skin pigmentation and oral leucoplakia. Androgens are a standard therapeutic option for bone marrow failure in those patients with DC who are unable to undergo haematopoietic stem cell transplantation, but there are no systematic data on its use in those patients. We evaluated haematological response and side effects of androgen therapy in 16 patients with DC in our observational cohort study. Untreated DC patients served as controls. Seventy percent of treated DC patients had a haematological response with red blood cell and/or platelet transfusion independence. The expected age-related decline in telomere length was noted in androgen-treated patients. All treated DC patients had at least one significant lipid abnormality. Additional treatment-related findings included a significant decrease in thyroid binding globulin, accelerated growth in pre-pubertal children and splenic peliosis in two patients. Liver enzymes were elevated in both androgen-treated and untreated patients, suggesting underlying liver involvement in DC. This study suggests that androgen therapy can be effectively used to treat bone marrow failure in DC, but that side effects need to be closely monitored.
Collapse
Affiliation(s)
- Payal P Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Children's National Medical Center, Washington, DC, USA
| | | | | | | | | |
Collapse
|
19
|
Savage SA. Human telomeres and telomere biology disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 125:41-66. [PMID: 24993697 DOI: 10.1016/b978-0-12-397898-1.00002-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Telomeres consist of long nucleotide repeats and a protein complex at chromosome ends essential for chromosome stability. Telomeres shorten with each cell division and thus are markers of cellular age. Dyskeratosis congenita (DC) is a cancer-prone inherited bone marrow failure syndrome caused by germ-line mutations in key telomere biology genes that result in extremely short telomeres. The triad of nail dysplasia, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC but highly variable. Patients with DC may also have but numerous other medical problems, including pulmonary fibrosis, liver abnormalities, avascular necrosis of the hips, and stenosis of the esophagus, lacrimal ducts, and/or urethra. All modes of inheritance have been reported in DC and de novo mutations are common. Broad phenotypic heterogeneity occurs within DC. Clinically severe variants of DC are Hoyeraal-Hreidarsson syndrome and Revesz syndrome. Coats plus syndrome joined the spectrum of DC with the discovery that it is caused by mutations in a telomere-capping gene. Less clinically severe variants, such as subsets of apparently isolated aplastic anemia or pulmonary fibrosis, have also been recognized. These patients may not have the DC-associated mucocutaneous triad or complicated medical features, but they do have the same underlying genetic etiology. This has led to the use of the descriptive term telomere biology disorder (TBD). This chapter will review the connection between telomere biology and human disease through the examples of DC and its related TBDs.
Collapse
Affiliation(s)
- Sharon A Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Ballew BJ, Savage SA. Updates on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol 2013; 6:327-37. [PMID: 23782086 DOI: 10.1586/ehm.13.23] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dyskeratosis congenita (DC) is a cancer-prone inherited bone marrow failure syndrome caused by aberrant telomere biology. The mucocutaneous triad of nail dysplasia, abnormal skin pigmentation and oral leukoplakia is diagnostic, but is not always present; DC can also be diagnosed by the presence of very short leukocyte telomeres. Patients with DC are at high risk of bone marrow failure, pulmonary fibrosis, liver disease, cancer and other medical problems. Germline mutations in one of nine genes associated with telomere maintenance are present in approximately 60% of patients. DC is one among the group of clinically and biologically related telomere biology disorders, including Hoyeraal-Hreidarsson syndrome, Revesz syndrome, Coats plus (also known as cranioretinal microangiopathy with calcifications and cysts) and subsets of aplastic anemia, pulmonary fibrosis, nonalcoholic and noninfectious liver disease and leukemia. The authors review the pathobiology that connects DC and the related telomere biology disorders, methods of diagnosis and management modalities.
Collapse
Affiliation(s)
- Bari J Ballew
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Blvd. EPS 7018, Rockville, MD 20892, USA
| | | |
Collapse
|
21
|
Abstract
Molecular pathogenesis may be elucidated for inherited bone marrow failure syndromes (IBMFS). The study and presentation of the details of their molecular biology and biochemistry is warranted for appropriate diagnosis and management of afflicted patients and to identify the physiology of the normal hematopoiesis and mechanisms of carcinogenesis. Several themes have emerged within each subsection of IBMFS, including the ribosomopathies, which include ribosome assembly and ribosomal RNA processing. The Fanconi anemia pathway has become interdigitated with the familial breast cancer syndromes. In this article, the diseases that account for most IBMFS diagnoses are analyzed.
Collapse
Affiliation(s)
- S Deborah Chirnomas
- Section of Pediatric Hematology-Oncology, LMP 2073, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | |
Collapse
|
22
|
Roberts AR, Huang E, Jones L, Daxinger L, Chong S, Whitelaw E. Non-telomeric epigenetic and genetic changes are associated with the inheritance of shorter telomeres in mice. Chromosoma 2013; 122:541-54. [DOI: 10.1007/s00412-013-0427-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 12/22/2022]
|
23
|
Telomeres and early-life stress: an overview. Biol Psychiatry 2013; 73:15-23. [PMID: 22831981 PMCID: PMC3495091 DOI: 10.1016/j.biopsych.2012.06.025] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/26/2012] [Accepted: 06/26/2012] [Indexed: 01/29/2023]
Abstract
The long-term sequelae of adverse early-life experiences have long been a focus in psychiatry, with a historic neurobiological emphasis on physiological systems that are demonstrably stress-responsive, such as the hypothalamic-pituitary-adrenal axis and neuroimmune function. However, there has been increasing recognition in the general medical literature that such sequelae might encompass more pervasive alterations in health status and physiology. Recent findings in telomere biology have suggested a new avenue for exploring the adverse health effects of childhood maltreatment. Telomere length in proliferative tissues declines with cell replication and the effect can be accelerated by such factors as inflammation, oxidative stress, radiation, and toxins. Reduced telomere length, as a proxy for cellular aging, has been associated with numerous chronic somatic diseases that are generally considered to be diseases of aging, such as diabetes, cancer, and heart disease. More recently, shorter telomeres have been demonstrated in several psychiatric conditions, particularly depression. Sustained psychosocial stress of a variety of types in adulthood appears to be associated with shorter telomeres. Now, emerging work suggests a robust, and perhaps dose-dependent, relationship with early-life stress. These findings present new opportunities to reconceptualize the complex relationships between experience, physical and psychiatric disease, and aging.
Collapse
|