1
|
Koch K, Schlüppmann K, Hüsken S, Stark LM, Förster N, Masjosthusmann S, Klose J, Dönmez A, Fritsche E. Nuclear hormone receptors control fundamental processes of human fetal neurodevelopment: Basis for endocrine disruption assessment. ENVIRONMENT INTERNATIONAL 2025; 198:109400. [PMID: 40147140 DOI: 10.1016/j.envint.2025.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/10/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Despite growing awareness of endocrine disrupting chemicals (EDCs), knowledge gaps remain regarding their effects on human brain development. EDC risk assessment focuses primarily on EATS modalities (estrogens, androgens, thyroid hormones, and steroidogenesis), overlooking the broader range of hormone receptors expressed in the developing brain. This limits the evaluation of chemicals for their potential to cause endocrine disruption-mediated developmental neurotoxicity (ED-DNT). The Neurosphere Assay, an in vitro test method for developmental neurotoxicity (DNT) evaluation, is an integral component of the DNT in vitro testing battery, which has been used to screen a broad domain of environmental chemicals. Here, we define the endocrine-related applicability domain of the Neurosphere Assay by assessing the impact and specificity of 14 hormone receptors on seven key neurodevelopmental processes (KNDPs), neural progenitor cell (NPC) proliferation, migration of radial glia, neurons, and oligodendrocytes, neurite outgrowth, and differentiation of neurons and oligodendrocytes. Comparative analyses in human and rat NPCs of both sexes revealed species- and sex-specific responses. Mechanistic insights were obtained through RNA sequencing and agonist/antagonist co-exposures. Most receptor agonists modulated KNDPs at concentrations in the range of physiologically relevant hormone concentrations. Phenotypic effects induced by glucocorticoid receptor (GR), liver X receptor (LXR), peroxisome proliferator-activated receptor beta/delta (PPARβδ), retinoic acid receptor (RAR) and retinoid X receptor (RXR) activation were counteracted by receptor antagonists, confirming specificity. Transcriptomics highlighted receptor crosstalk and the involvement of conserved developmental pathways (e.g. Notch and Wnt). Species comparisons identified limited concordance in hormone receptor-regulated KNDPs between human and rat NPCs. This study presents novel findings on cellular and molecular hormone actions in human fetal NPCs, highlights major species differences, and illustrates the Neurosphere Assay's relevance for detecting endocrine MoAs, supporting its application in human-based ED-DNT risk assessment.
Collapse
Affiliation(s)
- Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; DNTOX GmbH, Duesseldorf, Germany.
| | - Kevin Schlüppmann
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Saskia Hüsken
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Louisa Merit Stark
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Nils Förster
- Bioinformatics Group, Faculty for Biology and Biotechnology, Ruhr-University Bochum, Germany; Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, Bochum, Germany
| | | | - Jördis Klose
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; DNTOX GmbH, Duesseldorf, Germany
| | - Arif Dönmez
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; DNTOX GmbH, Duesseldorf, Germany
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; DNTOX GmbH, Duesseldorf, Germany; Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany; SCAHT - Swiss Centre for Applied Human Toxicology, Basel, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Maternal serum cortisol levels during pregnancy differ by fetal sex. Psychoneuroendocrinology 2023; 149:105999. [PMID: 36543024 DOI: 10.1016/j.psyneuen.2022.105999] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Males and females have different patterns of fetal growth, resulting in different sizes at birth. Increased maternal cortisol levels in pregnancy negatively impact fetal growth. However, it is unknown whether sexual dimorphism displays differences in maternal cortisol levels already during early pregnancy and to what extent it explains sex differences in intra-uterine growth. The present cross-sectional study investigated whether fetal sex was associated with the level of maternal serum total cortisol in first half of pregnancy and its contribution to sex differences in fetal growth. METHOD The study population comprised 3049 pregnant women from the Amsterdam Born Children and their Development (ABCD)-cohort). Total serum cortisol levels were determined during pregnancy. Multivariable linear regression was used to determine fetal sex differences in maternal cortisol levels and its association with sex differences in fetal growth measured as birth weight standardized for gestational age, parity and sex. RESULTS Maternal serum total cortisol increased during pregnancy from on average 390 ± 22 nmol/L (at 5th week) to 589 ± 15 nmol/L (at 20th week). Women carrying a female fetus had higher maternal total cortisol levels. This sex difference was not significant before the 11th week; at the 12th week the difference was 15 ± 7 nmol/L which increased to 45 ± 22 nmol/L at the 20th week (p-for-interaction=0.05). Maternal total cortisol levels were associated with birth weight (ß:-0.22;P < 0.001). However, sex differences in birth weight were not explained by related maternal total cortisol levels. CONCLUSION The sexual dimorphic maternal serum total cortisol levels are apparent after the first trimester but do not explain the different patterns of fetal growth.
Collapse
|
3
|
Lu Z, Guo Y, Xu D, Xiao H, Dai Y, Liu K, Chen L, Wang H. Developmental toxicity and programming alterations of multiple organs in offspring induced by medication during pregnancy. Acta Pharm Sin B 2023; 13:460-477. [PMID: 36873163 PMCID: PMC9978644 DOI: 10.1016/j.apsb.2022.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Medication during pregnancy is widespread, but there are few reports on its fetal safety. Recent studies suggest that medication during pregnancy can affect fetal morphological and functional development through multiple pathways, multiple organs, and multiple targets. Its mechanisms involve direct ways such as oxidative stress, epigenetic modification, and metabolic activation, and it may also be indirectly caused by placental dysfunction. Further studies have found that medication during pregnancy may also indirectly lead to multi-organ developmental programming, functional homeostasis changes, and susceptibility to related diseases in offspring by inducing fetal intrauterine exposure to too high or too low levels of maternal-derived glucocorticoids. The organ developmental toxicity and programming alterations caused by medication during pregnancy may also have gender differences and multi-generational genetic effects mediated by abnormal epigenetic modification. Combined with the latest research results of our laboratory, this paper reviews the latest research progress on the developmental toxicity and functional programming alterations of multiple organs in offspring induced by medication during pregnancy, which can provide a theoretical and experimental basis for rational medication during pregnancy and effective prevention and treatment of drug-related multiple fetal-originated diseases.
Collapse
Affiliation(s)
- Zhengjie Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| |
Collapse
|
4
|
Ortega VA, Mercer EM, Giesbrecht GF, Arrieta MC. Evolutionary Significance of the Neuroendocrine Stress Axis on Vertebrate Immunity and the Influence of the Microbiome on Early-Life Stress Regulation and Health Outcomes. Front Microbiol 2021; 12:634539. [PMID: 33897639 PMCID: PMC8058197 DOI: 10.3389/fmicb.2021.634539] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Stress is broadly defined as the non-specific biological response to changes in homeostatic demands and is mediated by the evolutionarily conserved neuroendocrine networks of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Activation of these networks results in transient release of glucocorticoids (cortisol) and catecholamines (epinephrine) into circulation, as well as activation of sympathetic fibers innervating end organs. These interventions thus regulate numerous physiological processes, including energy metabolism, cardiovascular physiology, and immunity, thereby adapting to cope with the perceived stressors. The developmental trajectory of the stress-axis is influenced by a number of factors, including the gut microbiome, which is the community of microbes that colonizes the gastrointestinal tract immediately following birth. The gut microbiome communicates with the brain through the production of metabolites and microbially derived signals, which are essential to human stress response network development. Ecological perturbations to the gut microbiome during early life may result in the alteration of signals implicated in developmental programming during this critical window, predisposing individuals to numerous diseases later in life. The vulnerability of stress response networks to maladaptive development has been exemplified through animal models determining a causal role for gut microbial ecosystems in HPA axis activity, stress reactivity, and brain development. In this review, we explore the evolutionary significance of the stress-axis system for health maintenance and review recent findings that connect early-life microbiome disturbances to alterations in the development of stress response networks.
Collapse
Affiliation(s)
- Van A Ortega
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
| | - Emily M Mercer
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.,Owerko Centre, The Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Human Umbilical Cord: Information Mine in Sex-Specific Medicine. Life (Basel) 2021; 11:life11010052. [PMID: 33451112 PMCID: PMC7828611 DOI: 10.3390/life11010052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Biological differences between sexes should be considered in all stages of research, as sexual dimorphism starts in utero leading to sex-specific fetal programming. In numerous biomedical fields, there is still a lack of stratification by sex despite primary cultured cells retaining memory of the sex and of the donor. The sex of donors in biological research must be known because variations in cells and cellular components can be used as endpoints, biomarkers and/or targets of pharmacological studies. This selective review focuses on the current findings regarding sex differences observed in the umbilical cord, a widely used source of research samples, both in the blood and in the circulating cells, as well as in the different cellular models obtainable from it. Moreover, an overview on sex differences in fetal programming is reported. As it emerges that the sex variable is still often forgotten in experimental models, we suggest that it should be mandatory to adopt sex-oriented research, because only awareness of these issues can lead to innovative research.
Collapse
|
6
|
Boll LM, Khamirchi R, Alonso L, Llurba E, Pozo ÓJ, Miri M, Dadvand P. Prenatal greenspace exposure and cord blood cortisol levels: A cross-sectional study in a middle-income country. ENVIRONMENT INTERNATIONAL 2020; 144:106047. [PMID: 32822928 DOI: 10.1016/j.envint.2020.106047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Exposure to greenspace has been associated with reduced stress; however, the available evidence on such an association for the fetus is still very scarce. We, for the first time, investigated the association between maternal greenspace exposure and the level of cortisol, a stress hormone, in the cord blood. Our study was based on a cohort of 150 pregnant women in Sabzevar, Iran (2018). We comprehensively assessed greenspace exposure for each participant through (i) residential surrounding greenspace (using two satellite-derived vegetation indices), (ii) residential proximity to green spaces, (iii) maternal visual access to greenspace, (iv) use of public and private green spaces, (v) having a private garden, and (vi) the number of plant pots at home. Linear regression models were developed to assess the association of each indicator of greenspace exposure with cord blood cortisol levels, controlled for the relevant covariates. We observed that a higher residential surrounding greenspace (100 m buffer), having a window with greenspace view, window greenspace coverage of more than 50%, frequently looking at greenspace through window, residential proximity to large green spaces, and more time spent in green spaces were associated with lower cortisol levels in the cord blood. The findings for residential surrounding greenspace at 300 m and 500 m buffers, residential proximity to any green space regardless of its size, having a private garden, and number of plant pots at home were not conclusive. While about one-third of the association between residential surrounding greenspace (100 m buffer) could be mediated through reduction in exposure to air pollution, we did not observe any strong evidence for such a mediatory role for the visual access to greenspace. The findings stratified for parental education and housing type showed mixed patterns. Our findings suggest that more greenspace exposure might reduce cortisol level in the cord blood.
Collapse
Affiliation(s)
- Lilian Marie Boll
- ISGlobal, Barcelona, Spain; University of Southern Denmark (SDU), Esbjerg, Denmark
| | - Ramezanali Khamirchi
- Non-communicable Diseases Research Center, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Lucia Alonso
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain Maternal and Child Health Development Network, Madrid, Spain
| | - Elisa Llurba
- Obstetrics and Gynaecology Department, Santa Creu i Sant Pau Hospital, Barcelona, Spain; Universitat Autónoma de Barcelona (UAB), Spain; Maternal and Child Health Development Network II (SAMID II) RD16/0022/0015SEP, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Óscar J Pozo
- Integrative Pharmacology and Systems Neuroscience Group, IMIM, Hospital del Mar, Barcelona, Spain
| | - Mohammad Miri
- Non-communicable Diseases Research Center, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain Maternal and Child Health Development Network, Madrid, Spain.
| |
Collapse
|
7
|
Edwards HE, Wynne-Edwards KE. Substrates and Clearance Products of Fetal Adrenal Glucocorticoid Synthesis in Full-Term Human Umbilical Circulation. J Endocr Soc 2019; 4:bvz041. [PMID: 32047871 PMCID: PMC7003984 DOI: 10.1210/jendso/bvz041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/18/2019] [Indexed: 11/19/2022] Open
Abstract
In full-term elective caesarian sections, fetal flow of adrenal substrate steroids to products differs by sex, with males (M) in molar equilibrium whereas females (F) add net molarity and synthesize more cortisol. Using the same sampling design, paired, full-term, arterial, and venous umbilical cord samples and intrapartum chart records were obtained at the time of vaginal delivery (N = 167, 85 male) or emergency C-section (N = 38, 22 male). Eight steroids were quantified by liquid chromatography coupled to tandem mass spectrometry (adrenal glucocorticoids [cortisol, corticosterone], sequential cortisol precursor steroids [17-hydroxyprogesterone, 11-deoxycortisol], cortisol and corticosterone metabolites [cortisone and 11-dehydrocorticosterone], and gonadal steroids [androstenedione, testosterone]). Fetal sex was not significant in any analytic models. Going through both phase 1 and phase 2 labor increased fetal adrenal steroidogenesis and decreased male testosterone relative to emergency C-sections that do not reach stage 2 of labor (ie, head compressions) and elective C-sections with no labor. Sum adrenal steroid molarity arriving in venous serum was almost double the equivalent metric for deliveries without labor. No effects of operative vaginal delivery were noted. Maternal regional anesthetic suppressed venous concentrations, and fetal synthesis replaced that steroid. Approximate molar equivalence between substrate pool depletion and net glucocorticoid synthesis was seen. Paired venous and arterial umbilical cord serum has the potential to identify sex differences that underlie antenatal programming of hypothalamic-pituitary-adrenal axis function in later life. However, stage 2 labor before the collection of serum, and regional anesthetic for the mother, mask those sex differences.
Collapse
Affiliation(s)
- Heather E Edwards
- Department of Obstetrics and Gynecology, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| | - Katherine E Wynne-Edwards
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine & Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta
| |
Collapse
|
8
|
Wynne-Edwards KE, Lee K, Zhou R, Edwards HE. Sex differences in substrates and clearance products of cortisol and corticosterone synthesis in full-term human umbilical circulation without labor: Substrate depletion matches synthesis in males, but not females. Psychoneuroendocrinology 2019; 109:104381. [PMID: 31442935 DOI: 10.1016/j.psyneuen.2019.104381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Antenatal impacts on the hypothalamus- pituitary-adrenal axis affect health throughout later life and the impacts on developing males and females often differ. The female fetus at full-term (sampled as scheduled Caesarian section without antecedent labor) both receives more cortisol in umbilical venous blood and adds more cortisol to umbilical arterial circulation than the male. The current study was designed to expand our knowledge of sex-specific, fetal, adrenal steroid synthesis and clearance pathways. METHODS Paired, full-term, arterial and venous umbilical cord samples were taken at the time of scheduled Caesarian delivery (N = 53, 33 male). Adrenal glucocorticoids (cortisol, corticosterone), cortisol precursor steroids (17-hydroxyprogesterone, 11-deoxycortisol), and cortisol and corticosterone metabolites (cortisone and 11-dehydrocorticosterone), as well as gonadal steroids (testosterone and androstenedione), were quantified by liquid chromatography coupled to tandem mass spectrometry. RESULTS Both sexes preferentially added corticosterone. Males added more testosterone than females. The female fetus had higher umbilical cord (arterial and venous) concentrations of cortisol, as well as higher total steroid molarity summed across the six adrenal steroids, than males. Depletion of substrate pools of 17-hydroxyprogesterone, 11-deoxycortisol, and cortisone could account for only 20% of net female cortisol synthesis. In contrast, increased fetal synthesis of cortisol was balanced by equivalent molar depletion of substrate pools when the fetus was male. CONCLUSIONS Preferential fetal corticosterone synthesis in both sexes, and higher concentrations of cortisol in females were confirmed. Differences in adrenal steroidogenesis pathway function in full-term males and females might underlie antenatal programming of hypothalamic-pituitary-adrenal axis function in later life.
Collapse
Affiliation(s)
- Katherine E Wynne-Edwards
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Kovid Lee
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Ruokun Zhou
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Heather E Edwards
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
9
|
Cherak SJ, Malebranche ME, Wynne-Edwards K, Williamson T, Giesbrecht GF. Quantitative meta-analysis of maternal prenatal salivary cortisol and newborn birthweight does not identify effect of fetal sex. Psychoneuroendocrinology 2019; 106:117-121. [PMID: 30974325 DOI: 10.1016/j.psyneuen.2019.03.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/23/2019] [Accepted: 03/31/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Heightened concentration of maternal cortisol is a frequently proposed mechanism linking adverse maternal environments with poor birth outcomes, including birth weight. It is commonly hypothesized that prenatal exposures have sexually dimorphic effects on fetal development, however few studies have assessed the effects of fetal sex on the relationship between maternal cortisol and birth outcomes. METHODS In a previous systematic review and meta-analysis we obtained data from authors of included studies to calculate trimester-specific correlations between maternal prenatal salivary cortisol and newborn birth weight. Given that this data was well-poised to address the unknown effects of fetal sex on the relationship between maternal cortisol and birth outcomes, we contacted authors a second time with request to unblind sex into the correlations. An updated database search was conducted to identify potentially relevant articles published within 2018 and two additional articles were included. RESULTS AND DISCUSSION Eleven studies with a total of 2236 maternal-fetal dyads demonstrated negative correlations for both males, -0.15 (95% CI -0.24 to -0.06, I2 = 98.5%, p < 0.001) and females -0.21 (95% CI -0.25 to -0.17, I2 = 93.3%, p < 0.001). Sex difference were not statistically significant, p = 0.62. Despite greater exposure to cortisol and lower birth weight among females, the association did not differ by sex.
Collapse
Affiliation(s)
- Stephana J Cherak
- Department of Community Health Sciences, University of Calgary, 3820 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada; Alberta Children's Hospital Research Institute for Child and Maternal Health, Heritage Medical Research Building, 3330 Hospital Drive N.W., Calgary, AB, T2N 4N1, Canada; O'Brien Institute for Public Health, University of Calgary, 3820 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.
| | - Mary E Malebranche
- O'Brien Institute for Public Health, University of Calgary, 3820 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada; Department of General Internal Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB, T2N 4N1, Canada
| | - Katherine Wynne-Edwards
- Department of Comparative Biology and Experimental Medicine, University of Calgary, 33390 Hospital Drive N.W., T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, 33390 Hospital Drive N.W., T2N 4N1, Canada
| | - Tyler Williamson
- Department of Community Health Sciences, University of Calgary, 3820 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada; Alberta Children's Hospital Research Institute for Child and Maternal Health, Heritage Medical Research Building, 3330 Hospital Drive N.W., Calgary, AB, T2N 4N1, Canada; Department of General Internal Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB, T2N 4N1, Canada
| | - Gerald F Giesbrecht
- Department of Community Health Sciences, University of Calgary, 3820 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada; Alberta Children's Hospital Research Institute for Child and Maternal Health, Heritage Medical Research Building, 3330 Hospital Drive N.W., Calgary, AB, T2N 4N1, Canada; Department of Paediatrics, University of Calgary, 2888 Shaganappi Trail N.W., Calgary, AB, T3B 6A8, Canada; Department of Psychology, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
10
|
Liu Q, Jin S, Sun X, Sheng X, Mao Z, Jiang Y, Liu H, Hu C, Xia W, Li Y, Xu S. Maternal Blood Pressure, Cord Glucocorticoids, and Child Neurodevelopment at 2 Years of Age: A Birth Cohort Study. Am J Hypertens 2019; 32:524-530. [PMID: 30772907 DOI: 10.1093/ajh/hpz024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Pregnancy hypertensive disorders have impaired neurodevelopment in offspring. We aimed to explore the association of normal range maternal blood pressure (BP) with child neurodevelopment, as well as the possible role of placental 11-beta-hydroxysteroid dehydrogenase type 2 (11β-HSD2) therein. METHODS Among 1,008 mother-child pairs recruited in Wuhan, China, in 2013-2015, we measured maternal third-trimester BP (systolic BP (SBP) and diastolic BP (DBP)) and cord glucocorticoids (cortisol and cortisone), a marker reflecting placental 11β-HSD2 activity. We evaluated child neurodevelopment using the Bayley Scales of Infant Development (BSID) with obtaining the Mental and Psychomotor Development Index (MDI and PDI). Multiple regression and mediation analysis were performed to estimate the effect. RESULTS Each 5 mm Hg increase in maternal third-trimester SBP was associated with 1.54 points decrease in MDI (95% confidence interval (CI) = -2.60, -0.48) and 1.23 points decrease in PDI (95% CI = -2.14, -0.31); similar association was observed between DBP and BSID (adjusted β = -1.32; 95% CI = -2.53, -0.10 for MDI and -1.37; 95% CI = -2.42, -0.33 for PDI). Also, we found significant associations between cord cortisol/cortisone ratio and PDI (adjusted β = 2.95; 95% CI = 0.91, 4.99), as well as between maternal BP and cord cortisol/cortisone ratio (adjusted β = -0.03; 95% CI = -0.06, -0.01 for both SBP and DBP). Mediation analysis revealed that cord cortisol/cortisone ratio explained 6.29% of the association between SBP and PDI, and 6.85% between DBP and PDI. CONCLUSIONS Increased maternal normal range BP may affect child neurodevelopment. Furthermore, placental 11β-HSD2 activity might be involved in the process.
Collapse
Affiliation(s)
- Qi Liu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuna Jin
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xia Sheng
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yangqian Jiang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chen Hu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
11
|
Sun X, Li J, Jin S, Li Y, Liu W, Zhao H, Zhou Y, Jiang Y, Liu H, Xia W, Cai Z, Xu S, Shen X. Associations between repeated measures of maternal urinary phthalate metabolites during pregnancy and cord blood glucocorticoids. ENVIRONMENT INTERNATIONAL 2018; 121:471-479. [PMID: 30278310 DOI: 10.1016/j.envint.2018.09.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/04/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Previous studies have suggested that phthalates might disrupt fetal steroidogenesis. However, the evidence of the effects of prenatal phthalate exposure across pregnancy on fetal glucocorticoids was insufficient. OBJECTIVE We investigated the associations between urinary phthalate metabolites across pregnancy and cord blood glucocorticoids in a prospective birth cohort. METHODS Our study included 553 mother-infant pairs from a prospective birth cohort conducted in Wuhan, China. Maternal urine samples were collected at 14, 24 and 36 weeks of gestation (mean). Urinary phthalate metabolites and cord blood glucocorticoids (cortisol and cortisone) were measured. Generalized estimating equation models were conducted to explore the relationships of phthalate metabolite concentrations at each trimester and glucocorticoid levels. RESULTS Among the participants, mono‑benzyl phthalate (MBzP) in the first trimester was associated with higher cortisol/cortisone ratio concentrations, and mono‑(2‑ethyl‑5‑carboxypentyl) phthalate (MECPP) and mono‑(2‑ethyl‑5‑oxohexyl) phthalate (MEOHP) measured in the third trimester were associated with decreased cortisone. Moreover, the associations between phthalates and glucocorticoids varied by sex. Among the female infants, each 10-fold increase in several maternal urinary phthalate metabolite concentrations in 1st and 3rd trimester was associated with the increased glucocorticoid levels with percent changes ranged from 16.2%-55.9%. However, among male infants, each 10-fold increase in maternal urinary MECPP, mono‑(2‑ethyl‑5‑hydroxyhexyl) phthalate (MEHHP) and MEOHP in 3rd trimester was associated with 20.8%-36.3% decreased cortisol and cortisone levels, respectively. CONCLUSION We have shown that prenatal phthalate exposure during early and late trimester disrupted the infant steroidogenesis and these associations might be modified by infant sex. To the best of our knowledge, this is the first study to evaluate phthalate exposure at three trimesters during pregnancy in relation to infant glucocorticoids.
Collapse
Affiliation(s)
- Xiaojie Sun
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Jiufeng Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Shuna Jin
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Yuanyuan Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Wenyu Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yanqiu Zhou
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yangqian Jiang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Hongxiu Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Wei Xia
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Shunqing Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China.
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China.
| |
Collapse
|
12
|
Davis EP, Head K, Buss C, Sandman CA. Prenatal maternal cortisol concentrations predict neurodevelopment in middle childhood. Psychoneuroendocrinology 2017; 75:56-63. [PMID: 27771566 PMCID: PMC5505265 DOI: 10.1016/j.psyneuen.2016.10.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (cortisol in humans) are the end product of the hypothalamic-pituitary-adrenocortical (HPA) axis and are proposed as a key mechanism for programming fetal brain development. The present prospective longitudinal study evaluates the association between prenatal maternal cortisol concentrations and child neurodevelopment. Participants included a low risk sample of 91 mother-child pairs. Prenatal maternal plasma cortisol concentrations were measured at 19 and 31 gestational weeks. Brain development and cognitive functioning were assessed when children were 6-9 years of age. Structural magnetic resonance imaging scans were acquired and cortical thickness was determined. Child cognitive functioning was evaluated using standardized measures (Wechsler Intelligence Scale for Children IV and Expressive Vocabulary Test, Second Edition). Higher maternal cortisol concentrations during the third trimester were associated with greater child cortical thickness primarily in frontal regions. No significant associations were observed between prenatal maternal cortisol concentrations and child cortical thinning. Elevated third trimester maternal cortisol additionally was associated with enhanced child cognitive performance. Findings in this normative sample of typically developing children suggest that elevated maternal cortisol during late gestation exert lasting benefits for brain development and cognitive functioning 6-9 years later. The benefits of fetal exposure to higher maternal cortisol during the third trimester for child neurodevelopment are consistent with the role cortisol plays in maturation of the human fetus. It is plausible that more extreme elevations in maternal cortisol concentrations late in gestation, as well as exposure to pharmacological levels of synthetic glucocorticoids, may have neurotoxic effects on the developing fetal brain.
Collapse
Affiliation(s)
- Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, CO, 80210, United States; Women and Children's Health and Well-Being Project, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California, 92868, United States.
| | - Kevin Head
- Department of Psychology, University of Denver, Denver, CO, 80210, United States
| | - Claudia Buss
- Department of Medical Psychology, Charité Universitätsmedizin Berlin, Germany
| | - Curt A. Sandman
- Women and Children’s Health and Well-Being Project, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California, 92868, United States
| |
Collapse
|