1
|
Field MC. Ras superfamily GTPases and signal transduction in Euglena gracilis. Protist 2024; 175:126017. [PMID: 38295671 DOI: 10.1016/j.protis.2024.126017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/21/2023] [Accepted: 01/26/2024] [Indexed: 03/13/2024]
Abstract
Biological complexity is challenging to define, but can be considered through one or more features, including overall genome size, number of genes, morphological features, multicellularity, number of life cycle stages and the ability to adapt to different environments. Euglena gracilis meets several of these criteria, with a large genome of ∼38,000 protein coding genes and a considerable ability to survive under many different conditions, some of which can be described as challenging or harsh. Potential molecular exemplars of complexity tying these aspects together are signalling pathways, including GTPases, kinases and ubiquitylation, which increase the functionality of the gene-encoded proteome manyfold. Each of these examples can modulate both protein activity and gene expression. To address the connection between genome size and complexity I have undertaken a brief, and somewhat qualitative, survey of the small ras-like GTPase superfamily of E. gracilis. Unexpectedly, apart from Rab-GTPases which control intracellular transport and organelle identify, the size of the GTPase cohort is modest, and, for example, has not scaled with gene number when compared to the close relatives, trypanosomatids. I suggest that understanding the functions of this protein family will be vital to uncovering the complexity of E. gracilis biology.
Collapse
Affiliation(s)
- Mark C Field
- School of Life Sciences, University of Dundee, Dundee, UK; Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
2
|
Das AS, Sherry EC, Vaughan RM, Henderson ML, Zieba J, Uhl KL, Koehn O, Bupp CP, Rajasekaran S, Li X, Chhetri SB, Nissim S, Williams CL, Prokop JW. The complex, dynamic SpliceOme of the small GTPase transcripts altered by technique, sex, genetics, tissue specificity, and RNA base editing. Front Cell Dev Biol 2022; 10:1033695. [PMID: 36467401 PMCID: PMC9714508 DOI: 10.3389/fcell.2022.1033695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/01/2022] [Indexed: 04/04/2024] Open
Abstract
The small GTPase family is well-studied in cancer and cellular physiology. With 162 annotated human genes, the family has a broad expression throughout cells of the body. Members of the family have multiple exons that require splicing. Yet, the role of splicing within the family has been underexplored. We have studied the splicing dynamics of small GTPases throughout 41,671 samples by integrating Nanopore and Illumina sequencing techniques. Within this work, we have made several discoveries. 1). Using the GTEx long read data of 92 samples, each small GTPase gene averages two transcripts, with 83 genes (51%) expressing two or more isoforms. 2). Cross-tissue analysis of GTEx from 17,382 samples shows 41 genes (25%) expressing two or more protein-coding isoforms. These include protein-changing transcripts in genes such as RHOA, RAB37, RAB40C, RAB4B, RAB5C, RHOC, RAB1A, RAN, RHEB, RAC1, and KRAS. 3). The isolation and library technique of the RNAseq influences the abundance of non-sense-mediated decay and retained intron transcripts of small GTPases, which are observed more often in genes than appreciated. 4). Analysis of 16,243 samples of "Blood PAXgene" identified seven genes (3.7%; RHOA, RAB40C, RAB4B, RAB37, RAB5B, RAB5C, RHOC) with two or more transcripts expressed as the major isoform (75% of the total gene), suggesting a role of genetics in altering splicing. 5). Rare (ARL6, RAB23, ARL13B, HRAS, NRAS) and common variants (GEM, RHOC, MRAS, RAB5B, RERG, ARL16) can influence splicing and have an impact on phenotypes and diseases. 6). Multiple genes (RAB9A, RAP2C, ARL4A, RAB3A, RAB26, RAB3C, RASL10A, RAB40B, and HRAS) have sex differences in transcript expression. 7). Several exons are included or excluded for small GTPase genes (RASEF, KRAS, RAC1, RHEB, ARL4A, RHOA, RAB30, RHOBTB1, ARL16, RAP1A) in one or more forms of cancer. 8). Ten transcripts are altered in hypoxia (SAR1B, IFT27, ARL14, RAB11A, RAB10, RAB38, RAN, RIT1, RAB9A) with RHOA identified to have a transient 3'UTR RNA base editing at a conserved site found in all of its transcripts. Overall, we show a remarkable and dynamic role of splicing within the small GTPase family that requires future explorations.
Collapse
Affiliation(s)
- Akansha S. Das
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Biology, Washington and Jefferson College, Washington, PA, United States
| | - Emily C. Sherry
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, United States
| | - Robert M. Vaughan
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Marian L. Henderson
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- The Department of Biology, Calvin University, Grand Rapids, MI, United States
| | - Jacob Zieba
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Genetics and Genome Sciences Program, BioMolecular Science, Michigan State University, East Lansing, MI, United States
| | - Katie L. Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Olivia Koehn
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Caleb P. Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Medical Genetics, Spectrum Health and Helen DeVos Children’s Hospital, Grand Rapids, MI, United States
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Pediatric Critical Care Medicine, Helen DeVos Children’s Hospital Spectrum Health, Grand Rapids, MI, United States
- Office of Research, Spectrum Health, Grand Rapids, MI, United States
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Surya B. Chhetri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MA, United States
| | - Sahar Nissim
- Genetics and Gastroenterology Divisions, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
| | - Carol L. Williams
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Genetics and Genome Sciences Program, BioMolecular Science, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Porfírio-Sousa AL, Tice AK, Brown MW, J. G. Lahr D. Phylogenetic reconstruction and evolution of the Rab GTPase gene family in Amoebozoa. Small GTPases 2022; 13:100-113. [PMID: 33779495 PMCID: PMC9707542 DOI: 10.1080/21541248.2021.1903794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rab GTPase is a paralog-rich gene family that controls the maintenance of the eukaryotic cell compartmentalization system. Diverse eukaryotes have varying numbers of Rab paralogs. Currently, little is known about the evolutionary pattern of Rab GTPase in most major eukaryotic 'supergroups'. Here, we present a comprehensive phylogenetic reconstruction of the Rab GTPase gene family in the eukaryotic 'supergroup' Amoebozoa, a diverse lineage represented by unicellular and multicellular organisms. We demonstrate that Amoebozoa conserved 20 of the 23 ancestral Rab GTPases predicted to be present in the last eukaryotic common ancestor and massively expanded several 'novel' in-paralogs. Due to these 'novel' in-paralogs, the Rab family composition dramatically varies between the members of Amoebozoa; as a consequence, 'supergroup'-based studies may significantly change our current understanding of the evolution and diversity of this gene family. The high diversity of the Rab GTPase gene family in Amoebozoa makes this 'supergroup' a key lineage to study and advance our knowledge of the evolution of Rab in Eukaryotes.
Collapse
Affiliation(s)
| | - Alexander K. Tice
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, USA,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, Mississippi, USA
| | - Matthew W. Brown
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, USA,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, Mississippi, USA,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Daniel J. G. Lahr
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil,CONTACT Daniel J. G. Lahr Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
de Castro Andreassa E, Santos MDMD, Wassmandorf R, Wippel HH, Carvalho PC, Fischer JDSDG, Souza TDACBD. Proteomic changes in Trypanosoma cruzi epimastigotes treated with the proapoptotic compound PAC-1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140582. [PMID: 33285319 DOI: 10.1016/j.bbapap.2020.140582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/23/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
Apoptosis is a highly regulated process of cell death in metazoans. Therefore, understanding the biochemical changes associated with apoptosis-like death in Trypanosoma cruzi is key to drug development. PAC-1 was recently shown to induce apoptosis in T. cruzi; with this as motivation, we used quantitative proteomics to unveil alterations of PAC-1-treated versus untreated epimastigotes. The PAC-1 treatment reduced the abundance of putative vesicle-associated membrane protein, putative eukaryotic translation initiation factor 1 eIF1, coatomer subunit beta, putative amastin, and a putative cytoskeleton-associated protein. Apoptosis-like signaling also increases the abundance of proteins associated with actin cytoskeleton remodeling, cell polarization, apoptotic signaling, phosphorylation, methylation, ergosterol biosynthesis, vacuolar proteins associated with autophagy, and flagellum motility. We shortlist seventeen protein targets for possible use in chemotherapy for Chagas disease. Almost all differentially abundant proteins belong to a family of proteins previously associated with apoptosis in metazoans, suggesting that the apoptotic pathway's key functions have been preserved from trypanosomatids and metazoans. SIGNIFICANCE: Approximately 8 million people worldwide are infected with Trypanosoma cruzi. The treatment of Chagas disease comprises drugs with severe side effects, thus limiting their application. Thus, developing new pharmaceutical solutions is relevant, and several molecules targeting apoptosis are therapeutically efficient for parasitic, cardiac, and neurological diseases. Apoptotic processes lead to specific morphological features that have been previously observed in T. cruzi. Here, we investigate changes in epimastigotes' proteomic profile treated with the proapoptotic compound PAC-1, providing data concerning the regulation of both metabolic and cellular processes in nonmetazoan apoptotic cells. We shortlist seventeen protein target candidates for use in chemotherapy for Chagas disease.
Collapse
Affiliation(s)
- Emanuella de Castro Andreassa
- Structural and Computational Proteomics Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, PR, 80320-290, Brazil
| | - Marlon Dias Mariano Dos Santos
- Structural and Computational Proteomics Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, PR, 80320-290, Brazil
| | - Rafaela Wassmandorf
- Structural and Computational Proteomics Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, PR, 80320-290, Brazil
| | - Helisa Helena Wippel
- Structural and Computational Proteomics Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, PR, 80320-290, Brazil
| | - Paulo Costa Carvalho
- Structural and Computational Proteomics Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, PR, 80320-290, Brazil
| | | | | |
Collapse
|
5
|
Vesteg M, Hadariová L, Horváth A, Estraño CE, Schwartzbach SD, Krajčovič J. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa. Biol Rev Camb Philos Soc 2019; 94:1701-1721. [PMID: 31095885 DOI: 10.1111/brv.12523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/23/2023]
Abstract
Parasitic trypanosomatids and phototrophic euglenids are among the most extensively studied euglenozoans. The phototrophic euglenid lineage arose relatively recently through secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga that evolved into the euglenid secondary chloroplast. The parasitic trypanosomatids (i.e. Trypanosoma spp. and Leishmania spp.) and the freshwater phototrophic euglenids (i.e. Euglena gracilis) are the most evolutionary distant lineages in the Euglenozoa phylogenetic tree. The molecular and cell biological traits they share can thus be considered as ancestral traits originating in the common euglenozoan ancestor. These euglenozoan ancestral traits include common mitochondrial presequence motifs, respiratory chain complexes containing various unique subunits, a unique ATP synthase structure, the absence of mitochondria-encoded transfer RNAs (tRNAs), a nucleus with a centrally positioned nucleolus, closed mitosis without dissolution of the nuclear membrane and nucleoli, a nuclear genome containing the unusual 'J' base (β-D-glucosyl-hydroxymethyluracil), processing of nucleus-encoded precursor messenger RNAs (pre-mRNAs) via spliced-leader RNA (SL-RNA) trans-splicing, post-transcriptional gene silencing by the RNA interference (RNAi) pathway and the absence of transcriptional regulation of nuclear gene expression. Mitochondrial uridine insertion/deletion RNA editing directed by guide RNAs (gRNAs) evolved in the ancestor of the kinetoplastid lineage. The evolutionary origin of other molecular features known to be present only in either kinetoplastids (i.e. polycistronic transcripts, compaction of nuclear genomes) or euglenids (i.e. monocistronic transcripts, huge genomes, many nuclear cis-spliced introns, polyproteins) is unclear.
Collapse
Affiliation(s)
- Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| | - Lucia Hadariová
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), 252 50, Vestec, Czech Republic.,Department of Parasitology, Faculty of Science, Charles University in Prague, 128 44, Prague, Czech Republic
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia
| | - Carlos E Estraño
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Steven D Schwartzbach
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Juraj Krajčovič
- Department of Biology, Faculty of Natural Sciences, University of ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| |
Collapse
|
6
|
Pep5, a Fragment of Cyclin D2, Shows Antiparasitic Effects in Different Stages of the Trypanosoma cruzi Life Cycle and Blocks Parasite Infectivity. Antimicrob Agents Chemother 2019; 63:AAC.01806-18. [PMID: 30833431 DOI: 10.1128/aac.01806-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/17/2019] [Indexed: 12/20/2022] Open
Abstract
Pep5 (WELVVLGKL) is a fragment of cyclin D2 that exhibits a 2-fold increase in the S phase of the HeLa cell cycle. When covalently bound to a cell-penetrating peptide (Pep5-cpp), the nonapeptide induces cell death in several tumor cells, including breast cancer and melanoma cells. Additionally, Pep5-cpp reduces the in vivo tumor volume of rat glioblastoma. Chagas disease, which is caused by the flagellated parasite Trypanosoma cruzi, is a neglected disease that occurs mainly in the Americas, where it is considered an important public health issue. Given that there are only two options for treating the disease, it is exceptionally crucial to search for new molecules with potential pharmacological action against the parasites. In this study, we demonstrate that Pep5-cpp induces cell death in epimastigote, trypomastigote, and amastigote forms of T. cruzi The Pep5-cpp peptide was also able to decrease the percentage of infected cells without causing any detectable toxic effects in mammalian host cells. The infective, i.e., trypomastigote form of T. cruzi pretreated with Pep5-cpp was unable to infect LLC-MK2 monkey kidney cells. Also, Pep5-binding proteins were identified by mass spectrometry, including calmodulin-ubiquitin-associated protein, which is related to the virulence and parasitemia of T. cruzi Taken together, these data suggest that Pep5 can be used as a novel alternative for the treatment of Chagas disease.
Collapse
|
7
|
Is the activity of CGRP and Adrenomedullin regulated by RAMP (−2) and (−3) in Trypanosomatidae? An in-silico approach. INFECTION GENETICS AND EVOLUTION 2018; 61:197-206. [DOI: 10.1016/j.meegid.2018.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 01/06/2023]
|
8
|
Yavuz S, Warren G. A role for Sar1 and ARF1 GTPases during Golgi biogenesis in the protozoan parasite Trypanosoma brucei. Mol Biol Cell 2017; 28:1782-1791. [PMID: 28495798 PMCID: PMC5491186 DOI: 10.1091/mbc.e17-03-0151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/01/2017] [Accepted: 05/05/2017] [Indexed: 11/11/2022] Open
Abstract
A single Golgi stack is duplicated and partitioned into two daughter cells during the cell cycle of the protozoan parasite Trypanosoma brucei The source of components required to generate the new Golgi and the mechanism by which it forms are poorly understood. Using photoactivatable GFP, we show that the existing Golgi supplies components directly to the newly forming Golgi in both intact and semipermeabilized cells. The movement of a putative glycosyltransferase, GntB, requires the Sar1 and ARF1 GTPases in intact cells. In addition, we show that transfer of GntB from the existing Golgi to the new Golgi can be recapitulated in semipermeabilized cells and is sensitive to the GTP analogue GTPγS. We suggest that the existing Golgi is a key source of components required to form the new Golgi and that this process is regulated by small GTPases.
Collapse
Affiliation(s)
- Sevil Yavuz
- Max F. Perutz Laboratories, University of Vienna, and Medical University of Vienna, Vienna Biocenter, Vienna A-1030, Austria
| | - Graham Warren
- Max F. Perutz Laboratories, University of Vienna, and Medical University of Vienna, Vienna Biocenter, Vienna A-1030, Austria
| |
Collapse
|
9
|
Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep 2016; 6:23704. [PMID: 27021793 PMCID: PMC4810370 DOI: 10.1038/srep23704] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/24/2016] [Indexed: 01/22/2023] Open
Abstract
Many high-quality genomes are available for dixenous (two hosts) trypanosomatid species of the genera Trypanosoma, Leishmania, and Phytomonas, but only fragmentary information is available for monoxenous (single-host) trypanosomatids. In trypanosomatids, monoxeny is ancestral to dixeny, thus it is anticipated that the genome sequences of the key monoxenous parasites will be instrumental for both understanding the origin of parasitism and the evolution of dixeny. Here, we present a high-quality genome for Leptomonas pyrrhocoris, which is closely related to the dixenous genus Leishmania. The L. pyrrhocoris genome (30.4 Mbp in 60 scaffolds) encodes 10,148 genes. Using the L. pyrrhocoris genome, we pinpointed genes gained in Leishmania. Among those genes, 20 genes with unknown function had expression patterns in the Leishmania mexicana life cycle suggesting their involvement in virulence. By combining differential expression data for L. mexicana, L. major and Leptomonas seymouri, we have identified several additional proteins potentially involved in virulence, including SpoU methylase and U3 small nucleolar ribonucleoprotein IMP3. The population genetics of L. pyrrhocoris was also addressed by sequencing thirteen strains of different geographic origin, allowing the identification of 1,318 genes under positive selection. This set of genes was significantly enriched in components of the cytoskeleton and the flagellum.
Collapse
|
10
|
Abstract
A decade of genome sequencing has transformed our understanding of how
trypanosomatid parasites have evolved and provided fresh impetus to explaining
the origins of parasitism in the Kinetoplastida. In this review, I will consider
the many ways in which genome sequences have influenced our view of genomic
reduction in trypanosomatids; how species-specific genes, and the genomic
domains they occupy, have illuminated the innovations in trypanosomatid genomes;
and how comparative genomics has exposed the molecular mechanisms responsible
for innovation and adaptation to a parasitic lifestyle.
Collapse
|
11
|
Purine metabolite and energy charge analysis of Trypanosoma brucei cells in different growth phases using an optimized ion-pair RP-HPLC/UV for the quantification of adenine and guanine pools. Exp Parasitol 2014; 141:28-38. [PMID: 24657574 DOI: 10.1016/j.exppara.2014.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/12/2014] [Accepted: 03/04/2014] [Indexed: 11/21/2022]
Abstract
Human African Trypanosomiasis (HAT) is caused by the protozoan parasite Trypanosoma brucei. Although trypanosomes are well-studied model organisms, only little is known about their adenine and guanine nucleotide pools. Besides being building blocks of RNA and DNA, these nucleotides are also important modulators of diverse biochemical cellular processes. Adenine nucleotides also play an important role in the regulation of metabolic energy. The energetic state of cells is evaluated by the energy charge which gives information about how much energy is available in form of high energy phosphate bonds of adenine nucleotides. A sensitive and reproducible ion-pair RP-HPLC/UV method was developed and optimized, allowing the quantification of guanine and adenine nucleosides/nucleotides in T. brucei. With this method, the purine levels and their respective ratios were investigated in trypanosomes during logarithmic, stationary and senescent growth phases. Results of this study showed that all adenine and guanine purines under investigation were in the low mM range. The energy charge was found to decrease from logarithmic to static and to senescent phase whereas AMP/ATP, ADP/ATP and GDP/GTP ratios increased in the same order. In addition, the AMP/ATP ratio varied as the square of the ADP/ATP ratio, indicating AMP to be the key energy sensor molecule in trypanosomes.
Collapse
|
12
|
Adung'a VO, Field MC. TbFRP, a novel FYVE-domain containing phosphoinositide-binding Ras-like GTPase from trypanosomes. Exp Parasitol 2012; 133:255-64. [PMID: 23220323 PMCID: PMC3593210 DOI: 10.1016/j.exppara.2012.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/15/2012] [Indexed: 01/06/2023]
Abstract
Ras-like small GTPases are regulatory proteins that control multiple aspects of cellular function, and are particularly prevalent in vesicular transport. A proportion of GTPase paralogs appear restricted to certain eukaryote lineages, suggesting roles specific to a restricted lineage, and hence potentially reflecting adaptation to individual lifestyles or ecological niche. Here we describe the role of a GTPase, TbFRP, a FYVE domain N-terminally fused to a Ras-like GTPase, originally identified in Trypanosoma brucei. As FYVE-domains specifically bind phosphoinositol 3-phosphate (PI3P), which associates with endosomes, we suggest that TbFRP may unite phosphoinositide and small G protein endosomal signaling in trypanosomatids. TbFRP orthologs are present throughout the Euglenazoa suggesting that FRP has functions throughout the group. We show that the FYVE domain of TbFRP is functional in PI3P-dependent membrane targeting and localizes at the endosomal region. Further, while TbFRP is apparently non-essential, knockdown and immunochemical evidence indicates that TbFRP is rapidly cleaved upon synthesis, releasing the GTPase and FYVE-domains. Finally, TbFRP expression at both mRNA and protein levels is cell density-dependent. Together, these data suggest that TbFRP is an endocytic GTPase with a highly unusual mechanism of action that involves proteolysis of the nascent protein and membrane targeting via PI3P.
Collapse
Affiliation(s)
- Vincent O Adung'a
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | |
Collapse
|
13
|
Abstract
SUMMARYLeishmaniaare obligatory intracellular parasitic protozoa that cycle between sand fly mid-gut and phagolysosomes of mammalian macrophages. They have developed genetically programmed changes in gene and protein expression that enable rapid optimization of cell function according to vector and host environments. During the last two decades, host-free systems that mimic intra-lysosomal environments have been devised in which promastigotes differentiate into amastigotes axenically. These cultures have facilitated detailed investigation of the molecular mechanisms underlyingLeishmaniadevelopment inside its host. Axenic promastigotes and amastigotes have been subjected to transcriptome and proteomic analyses. Development had appeared somewhat variable but was revealed by proteomics to be strictly coordinated and regulated. Here we summarize the current understanding ofLeishmaniapromastigote to amastigote differentiation, highlighting the data generated by proteomics.
Collapse
|
14
|
The GTPase TcRjl of the human pathogen Trypanosoma cruzi is involved in the cell growth and differentiation. Biochem Biophys Res Commun 2012; 419:38-42. [PMID: 22326867 DOI: 10.1016/j.bbrc.2012.01.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 11/20/2022]
Abstract
The protozoan parasite Trypanosoma cruzi, the etiological agent of Chagas Disease, undergoes through a complex life cycle where rounds of cell division and differentiation occur initially in the gut of triatominae vectors and, after transmission, inside of infected cells in vertebrate hosts. Members of the Ras superfamily of GTPases are molecular switches which play pivotal regulatory functions in cell growth and differentiation. We have previously described a novel GTPase in T. cruzi, TcRjl, which belongs to the RJL family of Ras-related GTP binding proteins. Here we show that most of TcRjl protein is found bound to GTP nucleotides and may be locked in this stage. In addition, we show that TcRjl is located close to the kinetoplast, in a region corresponding possibly to flagellar pocket of the parasite and the expression of a dominant-negative TcRjl construct (TcRjlS37N) displays a significative growth phenotype in reduced serum medium. Remarkably, overexpression of TcRjl inhibits differentiation of epimastigotes to trypomastigote forms and promotes the accumulation of intermediate differentiation stages. Our data suggest that TcRjl might play a role in the control of the parasite growth and differentiation.
Collapse
|
15
|
Abbasi K, DuBois KN, Dacks JB, Field MC. A novel Rho-like protein TbRHP is involved in spindle formation and mitosis in trypanosomes. PLoS One 2011; 6:e26890. [PMID: 22096505 PMCID: PMC3214021 DOI: 10.1371/journal.pone.0026890] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 10/06/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In animals and fungi Rho subfamily small GTPases are involved in signal transduction, cytoskeletal function and cellular proliferation. These organisms typically possess multiple Rho paralogues and numerous downstream effectors, consistent with the highly complex contributions of Rho proteins to cellular physiology. By contrast, trypanosomatids have a much simpler Rho-signaling system, and the Trypanosoma brucei genome contains only a single divergent Rho-related gene, TbRHP (Tb927.10.6240). Further, only a single RhoGAP-like protein (Tb09.160.4180) is annotated, contrasting with the >70 Rho GAP proteins from Homo sapiens. We wished to establish the function(s) of TbRHP and if Tb09.160.4180 is a potential GAP for this protein. METHODS/FINDINGS TbRHP represents an evolutionarily restricted member of the Rho GTPase clade and is likely trypanosomatid restricted. TbRHP is expressed in both mammalian and insect dwelling stages of T. brucei and presents with a diffuse cytoplasmic location and is excluded from the nucleus. RNAi ablation of TbRHP results in major cell cycle defects and accumulation of multi-nucleated cells, coinciding with a loss of detectable mitotic spindles. Using yeast two hybrid analysis we find that TbRHP interacts with both Tb11.01.3180 (TbRACK), a homolog of Rho-kinase, and the sole trypanosome RhoGAP protein Tb09.160.4180, which is related to human OCRL. CONCLUSIONS Despite minimization of the Rho pathway, TbRHP retains an important role in spindle formation, and hence mitosis, in trypanosomes. TbRHP is a partner for TbRACK and an OCRL-related trypanosome Rho-GAP.
Collapse
Affiliation(s)
- Kanwal Abbasi
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Kelly N. DuBois
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Joel B. Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Mark C. Field
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Fleming JR, Dawson A, Hunter WN. Crystal structure of Leishmania major ADP-ribosylation factor-like 1 and a classification of related GTPase family members in this Kinetoplastid. Mol Biochem Parasitol 2010; 174:141-4. [PMID: 20801163 DOI: 10.1016/j.molbiopara.2010.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 08/11/2010] [Accepted: 08/13/2010] [Indexed: 12/24/2022]
Abstract
ADP-ribosylation factor-like (ARL) proteins are small GTPases that undergo conformational changes upon nucleotide binding, and which regulate the affinity of ARLs for binding other proteins, lipids or membranes. There is a paucity of structural data on this family of proteins in the Kinetoplastida, despite studies implicating them in key events related to vesicular transport and regulation of microtubule-dependent processes. The crystal structure of Leishmania major ARL1 in complex with GDP has been determined to 2.1 Å resolution and reveals a high degree of structural conservation with human ADP-ribosylation factor 1 (ARF1). Putative L. major and Trypanosoma brucei ARF/ARL family members have been classified based on structural considerations, amino acid sequence conservation combined with functional data on Kinetoplastid and human orthologues. This classification may guide future studies designed to elucidate the function of specific family members.
Collapse
Affiliation(s)
- Jennifer R Fleming
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | |
Collapse
|
17
|
Heterologous expression studies of Saccharomyces cerevisiae reveal two distinct trypanosomatid CaaX protease activities and identify their potential targets. EUKARYOTIC CELL 2009; 8:1891-900. [PMID: 19820121 DOI: 10.1128/ec.00169-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The CaaX tetrapeptide motif typically directs three sequential posttranslational modifications, namely, isoprenylation, proteolysis, and carboxyl methylation. In all eukaryotic systems evaluated to date, two CaaX proteases (Rce1 and Ste24/Afc1) have been identified. Although the Trypanosoma brucei genome also encodes two putative CaaX proteases, the lack of detectable T. brucei Ste24 activity in trypanosome cell extracts has suggested that CaaX proteolytic activity within this organism is solely attributed to T. brucei Rce1 (J. R. Gillespie et al., Mol. Biochem. Parasitol. 153:115-124. 2007). In this study, we demonstrate that both T. brucei Rce1 and T. brucei Ste24 are enzymatically active when heterologously expressed in yeast. Using a-factor and GTPase reporters, we demonstrate that T. brucei Rce1 and T. brucei Ste24 possess partially overlapping specificities much like, but not identical to, their fungal and human counterparts. Of interest, a CaaX motif found on a trypanosomal Hsp40 protein was not cleaved by either T. brucei CaaX protease when examined in the context of the yeast a-factor reporter but was cleaved by both in the context of the Hsp40 protein itself when evaluated using an in vitro radiolabeling assay. We further demonstrate that T. brucei Rce1 is sensitive to small molecules previously identified as inhibitors of the yeast and human CaaX proteases and that a subset of these compounds disrupt T. brucei Rce1-dependent localization of our GTPase reporter in yeast. Together, our results suggest the conserved presence of two CaaX proteases in trypanosomatids, identify an Hsp40 protein as a substrate of both T. brucei CaaX proteases, support the potential use of small molecule CaaX protease inhibitors as tools for cell biological studies on the trafficking of CaaX proteins, and provide evidence that protein context influences T. brucei CaaX protease specificity.
Collapse
|
18
|
Natesan SKA, Peacock L, Leung KF, Matthews KR, Gibson W, Field MC. The trypanosome Rab-related proteins RabX1 and RabX2 play no role in intracellular trafficking but may be involved in fly infectivity. PLoS One 2009; 4:e7217. [PMID: 19787065 PMCID: PMC2748683 DOI: 10.1371/journal.pone.0007217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 09/03/2009] [Indexed: 01/17/2023] Open
Abstract
Background Rab GTPases constitute the largest subgroup of the Ras superfamily and are primarily involved in vesicle targeting. The full extent of Rab family function is unexplored. Several divergent Rab-like proteins are known but few have been characterized. In Trypanosoma brucei there are sixteen Rab genes, but RabX1, RabX2 and RabX3 are divergent within canonical sequence regions. Where known, trypanosome Rab functions are broadly conserved when orthologous relationships may be robustly established, but specific functions for RabX1, X2 and X3 have yet to be determined. RabX1 and RabX2 originated via tandem duplication and subcellular localization places RabX1 at the endoplasmic reticulum, while RabX2 is at the Golgi complex, suggesting distinct functions. We wished to determine whether RabX1 and RabX2 are involved in vesicle transport or other cellular processes. Methodology/Principal Findings Using comparative genomics we find that RabX1 and RabX2 are restricted to trypanosomatids. Gene knockout indicates that RabX1 and RabX2 are non-essential. Simultaneous RNAi knockdown of both RabX1 and RabX2, while partial, was also non-lethal and may suggest non-redundant function, consistent with the distinct locations of the proteins. Analysis of the knockout cell lines unexpectedly failed to uncover a defect in exocytosis, endocytosis or in the morphology or location of multiple markers for the endomembrane system, suggesting that neither RabX1 nor RabX2 has a major role in intracellular transport. However, it was apparent that RabX1 and RabX2 knockout cells displayed somewhat enhanced survival within flies. Conclusions/Significance RabX1 and RabX2, two members of the trypanosome Rab subfamily, were shown to have no major detectable role in intracellular transport, despite the localization of each gene product to highly specific endomembrane compartments. These data extend the functional scope of Rab proteins in trypanosomes to include non-canonical roles in differentiation-associated processes in protozoa.
Collapse
Affiliation(s)
| | - Lori Peacock
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Ka Fai Leung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Keith R. Matthews
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Mark C. Field
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
[Differentially expressed genes during Larix somatic embryomaturation and the expression profile of partial genes]. YI CHUAN = HEREDITAS 2009; 31:540-5. [PMID: 19586850 DOI: 10.3724/sp.j.1005.2009.00540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To study the molecular mechanism of Larix somatic embryogenesis, a differentially expressed cDNA library of Larix somatic embryo in the period of maturation was constructed using suppression subtractive hybridization (SSH). The cDNA from the cultures at the stage of somatic embryo maturation of embryogenic cell line Y35 of L. leptolepis xL. principis-rupprechtii was used as the tester and the cDNA from its subcultured callus was used as the driver. Eight hundreds randomly selected positive clones were sequenced, and 468 UniGenes were obtained finally. According to their function, these ESTs were classified into 19 categories and were involved in many biological process related to plant growth and development such as metabolism, transcription, signal transduction, transport facilitation, cell growth and division, cell structure, cell fate, protein synthesis or degradation, defense etc. Real-time PCR results of several ESTs showed that they were all differentially expressed at the different stages during cell line Y35 somatic embryo maturation.
Collapse
|
20
|
Zhang YJ, Tian HF, Wen JF. The evolution of YidC/Oxa/Alb3 family in the three domains of life: a phylogenomic analysis. BMC Evol Biol 2009; 9:137. [PMID: 19534824 PMCID: PMC2706819 DOI: 10.1186/1471-2148-9-137] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Accepted: 06/18/2009] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND YidC/Oxa/Alb3 family includes a group of conserved translocases that are essential for protein insertion into inner membranes of bacteria and mitochondria, and thylakoid membranes of chloroplasts. Because mitochondria and chloroplasts are of bacterial origin, Oxa and Alb3, like many other mitochondrial/chloroplastic proteins, are hypothetically derived from the pre-existing protein (YidC) of bacterial endosymbionts. Here, we test this hypothesis and investigate the evolutionary history of the whole YidC/Oxa/Alb3 family in the three domains of life. RESULTS Our comprehensive analyses of the phylogenetic distribution and phylogeny of the YidC/Oxa/Alb3 family lead to the following findings: 1) In archaea, YidC homologs are only sporadically distributed in Euryarchaeota; 2) Most bacteria contain only one YidC gene copy; some species in a few taxa (Bacillus, Lactobacillales, Actinobacteria and Clostridia) have two gene copies; 3) Eukaryotic Oxa and Alb3 have two separate prokaryotic origins, but they might not arise directly from the YidC of proteobacteria and cyanobacteria through the endosymbiosis origins of mitochondrium and chloroplast, respectively; 4) An ancient duplication occurred on both Oxa and Alb3 immediately after their origins, and thus most eukaryotes generally bear two Oxa and two Alb3. However, secondary loss, duplication or acquisition of new domain also occurred on the two genes in some lineages, especially in protists, resulting in a rich diversity or adaptive differentiation of the two translocases in these lineages. CONCLUSION YidC is distributed in bacteria and some Euryarchaeota. Although mitochondrial Oxa and chloroplastic Alb3 are derived from the prokaryotic YidC, their origin might be not related to the endosymbiosis events of the two organelles. In some eukaryotic lineages, especially in protists, Oxa and Alb3 have diverse evolutionary histories. Finally, a model for the evolutionary history of the entire YidC/Oxa/Alb3 family in the three domains of life is proposed.
Collapse
Affiliation(s)
- Yu-Juan Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan Province 650223, PR China.
| | | | | |
Collapse
|
21
|
VESTEG MATEJ, VACULA ROSTISLAV, BUREY SUZANNE, LÖFFELHARDT WOLFGANG, DRAHOVSKÁ HANA, MARTIN WILLIAM, KRAJČOVIČ JURAJ. Expression of Nucleus-Encoded Genes for Chloroplast Proteins in the FlagellateEuglena gracilis. J Eukaryot Microbiol 2009; 56:159-66. [DOI: 10.1111/j.1550-7408.2008.00383.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Georgianna DR, Payne GA. Genetic regulation of aflatoxin biosynthesis: from gene to genome. Fungal Genet Biol 2008; 46:113-25. [PMID: 19010433 DOI: 10.1016/j.fgb.2008.10.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 10/10/2008] [Accepted: 10/10/2008] [Indexed: 01/12/2023]
Abstract
Aflatoxins are notorious toxic secondary metabolites known for their impacts on human and animal health, and their effects on the marketability of key grain and nut crops. Understanding aflatoxin biosynthesis is the focus of a large and diverse research community. Concerted efforts by this community have led not only to a well-characterized biosynthetic pathway, but also to the discovery of novel regulatory mechanisms. Common to secondary metabolism is the clustering of biosynthetic genes and their regulation by pathway specific as well as global regulators. Recent data show that arrangement of secondary metabolite genes in clusters may allow for an important global regulation of secondary metabolism based on physical location along the chromosome. Available genomic and proteomic tools are now allowing us to examine aflatoxin biosynthesis more broadly and to put its regulation in context with fungal development and fungal ecology. This review covers our current understanding of the biosynthesis and regulation of aflatoxin and highlights new and emerging information garnered from structural and functional genomics. The focus of this review will be on studies in Aspergillus flavus and Aspergillus parasiticus, the two agronomically important species that produce aflatoxin. Also covered will be the important contributions gained by studies on production of the aflatoxin precursor sterigmatocystin in Aspergillus nidulans.
Collapse
Affiliation(s)
- D Ryan Georgianna
- Department of Plant Pathology, North Carolina State University, 851 Main Campus, Dr. Partners III Suite 267, Raleigh, NC 27606, Campus Box 7244, USA
| | | |
Collapse
|
23
|
Koumandou VL, Natesan SKA, Sergeenko T, Field MC. The trypanosome transcriptome is remodelled during differentiation but displays limited responsiveness within life stages. BMC Genomics 2008; 9:298. [PMID: 18573209 PMCID: PMC2443814 DOI: 10.1186/1471-2164-9-298] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 06/23/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosomatids utilise polycistronic transcription for production of the vast majority of protein-coding mRNAs, which operates in the absence of gene-specific promoters. Resolution of nascent transcripts by polyadenylation and trans-splicing, together with specific rates of mRNA turnover, serve to generate steady state transcript levels that can differ in abundance across several orders of magnitude and can be developmentally regulated. We used a targeted oligonucleotide microarray, representing the strongly developmentally-regulated T. brucei membrane trafficking system and approximately 10% of the Trypanosoma brucei genome, to investigate both between-stage, or differentiation-dependent, transcriptome changes and within-stage flexibility in response to various challenges. RESULTS 6% of the gene cohort are developmentally regulated, including several small GTPases, SNAREs, vesicle coat factors and protein kinases both consistent with and extending previous data. Therefore substantial differentiation-dependent remodeling of the trypanosome transcriptome is associated with membrane transport. Both the microarray and qRT-PCR were then used to analyse transcriptome changes resulting from specific gene over-expression, knockdown, altered culture conditions and chemical stress. Firstly, manipulation of Rab5 expression results in co-ordinate changes to clathrin protein expression levels and endocytotic activity, but no detectable changes to steady-state mRNA levels, which indicates that the effect is mediated post-transcriptionally. Secondly, knockdown of clathrin or the variant surface glycoprotein failed to perturb transcription. Thirdly, exposure to dithiothreitol or tunicamycin revealed no evidence for a classical unfolded protein response, mediated in higher eukaryotes by transcriptional changes. Finally, altered serum levels invoked little transcriptome alteration beyond changes to expression of ESAG6/7, the transferrin receptor. CONCLUSION While trypanosomes regulate mRNA abundance to effect the major changes accompanying differentiation, a given differentiated state appears transcriptionally inflexible. The implications of the absence of a transcriptome response in trypanosomes for both virulence and models of life cycle progression are discussed.
Collapse
Affiliation(s)
- V Lila Koumandou
- The Molteno Building, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | | | | | | |
Collapse
|
24
|
How complex is GTPase signaling in trypanosomes? Trends Parasitol 2008; 24:253-7. [PMID: 18467174 DOI: 10.1016/j.pt.2008.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 01/15/2008] [Accepted: 03/06/2008] [Indexed: 11/21/2022]
Abstract
Many signaling pathways in higher eukaryotes use Ras-like small GTPases. Here, we ask how complex are these small GTPase signaling pathways in trypanosomes? We seek to address this issue by comparisons with the representation of both the GTPase molecules and their accessory factors in several genomes.
Collapse
|
25
|
Abstract
Trypanosomatids are protozoan parasites, of interest due to both their disease burden and deeply divergent position within the eukaryotic lineage. The African trypanosome, Trypanosoma brucei, has emerged as a very amenable model system, with a considerable toolbox of methods available, including inducible overexpression, RNA interference, and a completed genome. Here we describe some of the special considerations that need to be addressed when studying trypanosome gene function, and in particular small GTPases; we provide protocols for transfection, RNA interference, overexpression and basic transport assays, in addition to an overview of available vectors, cell lines, and strategies.
Collapse
Affiliation(s)
- Mark C Field
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
26
|
Mauriello EM, Zusman DR. Polarity of motility systems in Myxococcus xanthus. Curr Opin Microbiol 2007; 10:624-9. [PMID: 17981496 DOI: 10.1016/j.mib.2007.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 09/06/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
Myxococcus xanthus is a gliding bacterium that contains two motility systems: S-motility, powered by polar type IV pili, and A-motility, powered by uncharacterized motors and adhesion complexes. The localization and coordination of the two motility engines is essential for directed motility as cells move forward and reverse. During cell reversals, the polarity and localization of motility proteins are rapidly inverted, rendering this system a fascinating example of dynamic protein localization.
Collapse
Affiliation(s)
- Emilia Mf Mauriello
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, United States
| | | |
Collapse
|
27
|
Rajalingam K, Schreck R, Rapp UR, Albert S. Ras oncogenes and their downstream targets. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1177-95. [PMID: 17428555 DOI: 10.1016/j.bbamcr.2007.01.012] [Citation(s) in RCA: 319] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 01/17/2007] [Accepted: 01/19/2007] [Indexed: 12/30/2022]
Abstract
RAS proteins are small GTPases, which serve as master regulators of a myriad of signaling cascades involved in highly diverse cellular processes. RAS oncogenes have been originally discovered as retroviral oncogenes, and ever since constitutively activating RAS mutations have been identified in human tumors, they are in the focus of intense research. In this review, we summarize the biochemical properties of RAS proteins, trace down the evolution of RAS signaling and present an overview of the spatio-temporal activation of major RAS isoforms. We further discuss RAS effector pathways, their role in normal and transformed cell physiology and summarize ongoing attempts to interfere with aberrant RAS signaling. Finally, we comment on the role of micro RNAs in modulating RAS expression, contribution of RAS to stem cell function and on high-throughput analyses of RAS signaling networks.
Collapse
Affiliation(s)
- Krishnaraj Rajalingam
- University of Würzburg, Institut für Medizinische Strahlenkunde und Zellforschung, Versbacherstr. 5, D-97078 Würzburg, Germany
| | | | | | | |
Collapse
|
28
|
Boureux A, Vignal E, Faure S, Fort P. Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol 2006; 24:203-16. [PMID: 17035353 PMCID: PMC2665304 DOI: 10.1093/molbev/msl145] [Citation(s) in RCA: 320] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
GTPases of the Rho family are molecular switches that play important roles in converting and amplifying external signals into cellular effects. Originally demonstrated to control the dynamics of the F-actin cytoskeleton, Rho GTPases have been implicated in many basic cellular processes that influence cell proliferation, differentiation, motility, adhesion, survival, or secretion. To elucidate the evolutionary history of the Rho family, we have analyzed over 20 species covering major eukaryotic clades from unicellular organisms to mammals, including platypus and opossum, and have reconstructed the ontogeny and the chronology of emergence of the different subfamilies. Our data establish that the 20 mammalian Rho members are structured into 8 subfamilies, among which Rac is the founder of the whole family. Rho, Cdc42, RhoUV, and RhoBTB subfamilies appeared before Coelomates and RhoJQ, Cdc42 isoforms, RhoDF, and Rnd emerged in chordates. In vertebrates, gene duplications and retrotranspositions increased the size of each chordate Rho subfamily, whereas RhoH, the last subfamily, arose probably by horizontal gene transfer. Rac1b, a Rac1 isoform generated by alternative splicing, emerged in amniotes, and RhoD, only in therians. Analysis of Rho mRNA expression patterns in mouse tissues shows that recent subfamilies have tissue-specific and low-level expression that supports their implication only in narrow time windows or in differentiated metabolic functions. These findings give a comprehensive view of the evolutionary canvas of the Rho family and provide guides for future structure and evolution studies of other components of Rho signaling pathways, in particular regulators of the RhoGEF family.
Collapse
Affiliation(s)
| | | | | | - Philippe Fort
- * Correspondence should be adressed to: Philippe Fort
| |
Collapse
|
29
|
Hall BS, Gabernet-Castello C, Voak A, Goulding D, Natesan SK, Field MC. TbVps34, the trypanosome orthologue of Vps34, is required for Golgi complex segregation. J Biol Chem 2006; 281:27600-12. [PMID: 16835237 DOI: 10.1074/jbc.m602183200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoinositides are important regulators of numerous cellular functions. The yeast class III phosphatidylinositol 3-kinase Vps34p, and its human orthologue hVPS34, are implicated in control of several key pathways, including endosome to lysosome transport, retrograde endosome to Golgi traffic, multivesicular body formation, and autophagy. We have identified the Vps34p orthologue in the African trypanosome, TbVps34. Knockdown of TbVps34 expression by RNA interference induces a severe growth defect, with a post-mitotic block to cytokinesis accompanied by a variety of morphological abnormalities. GFP2xFYVE, a chimeric protein that specifically binds phosphatidylinositol 3-phosphate, localizes to the trypanosome endosomal system and is delocalized under TbVps34 RNA interference (RNAi), confirming that TbVps34 is an authentic phosphatidylinositol 3-kinase. Expression of GFP2xFYVE enhances the TbVps34 RNAi-associated growth defect, suggesting a synthetic interaction via competition for phosphatidylinositol 3-phosphate-binding sites with endogenous FYVE domain proteins. Endocytosis of a fluid phase marker is unaffected by TbVps34 RNAi, but receptor-mediated endocytosis of transferrin and transport of concanavalin A to the lysosome are both impaired, confirming a role in membranous endocytic trafficking for TbVps34. TbVps34 knockdown inhibits export of variant surface glycoprotein, indicating a function in exocytic transport. Ultrastructural analysis revealed a highly extended Golgi apparatus following TbVps34 RNAi, whereas expression of the Golgi marker red fluorescent protein-GRASP (Grp1 (general receptor for phosphoinositides-1)-associated scaffold protein) demonstrated that trypanosomes are able to duplicate the Golgi complex but failed to complete segregation during mitosis, despite faithful replication and segregation of basal bodies and the kinetoplast. These observations implicate TbVps34 as having a role in coordinating segregation of the Golgi complex at cell division.
Collapse
Affiliation(s)
- Belinda S Hall
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK
| | | | | | | | | | | |
Collapse
|
30
|
De Melo LDB, Eisele N, Nepomuceno-Silva JL, Lopes UG. TcRho1, the Trypanosoma cruzi Rho homologue, regulates cell-adhesion properties: Evidence for a conserved function. Biochem Biophys Res Commun 2006; 345:617-22. [PMID: 16690023 DOI: 10.1016/j.bbrc.2006.04.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 04/17/2006] [Indexed: 10/24/2022]
Abstract
Rho proteins are members of the Ras superfamily of small GTPases. In higher eukaryotes these proteins play pivotal role in cell movement, phagocytosis, intracellular transport, cell-adhesion, and maintenance of cell morphology, mainly through the regulation of actin microfilaments. The GTPase TcRho1 is the only member of the Rho family described in human protozoan parasite Trypanosoma cruzi. We previously demonstrated that TcRho1 is actually required for differentiation of epimastigote to trypomastigote forms during the parasite cell cycle. In the present work, we describe cellular phenotypes induced by TcRho1 heterologous expression in NIH 3T3 fibroblasts. The NIH-3T3 lineages expressing the TcRho1-G15V and TcRho1-Q76L mutants displayed decreased levels of migration compared to the control lineage NIH-3T3 pcDNA3.1, a phenotype probably due to distinct cell-substrate adhesion properties expressed by the mutant cell lines. Accordingly, cell-substrate adhesion assays revealed that the mutant cell lines of NIH-3T3 expressing TcRho1-positive dominants constructions present enhanced substrate-adhesion phenotype. Furthermore, similar experiments with T. cruzi expressing TcRho1 mutants also revealed an enhancement of cell attachment. These results suggest that TcRho1 plays a conserved regulatory role in cell-substrate adhesion in both NIH-3T3 fibroblasts and T. cruzi epimastigotes. Taken together, our data corroborate the notion that TcRho1 may regulate the substrate-adhesion in T. cruzi, a critical step for successful progression of the parasite life cycle.
Collapse
Affiliation(s)
- Luiz Dione Barbosa De Melo
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
31
|
Jiang SY, Ramachandran S. Comparative and evolutionary analysis of genes encoding small GTPases and their activating proteins in eukaryotic genomes. Physiol Genomics 2005; 24:235-51. [PMID: 16332933 DOI: 10.1152/physiolgenomics.00210.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both small GTPase and its activating protein (GAP) superfamilies exist in various eukaryotes. The small GTPases regulate a wide variety of cellular processes by cycling between active GTP- and inactive GAP-bound conformations. The GAPs promote GTPase inactivation by stimulating the GTP hydrolysis. In this study, we identified 111 small GTPases and 85 GAPs in rice, 65 GAPs in Arabidopsis, 90 small GTPases in Drosophila melanogaster, and 35 GAPs in Saccharomyces cerevisiaeby genome-wide analysis. We then analyzed and compared a total of 498 small GTPases and 422 GAPs from these four eukaryotic and human genomes. Both animals and yeast genomes contained five families of small GTPases and their GAPs. However, plants had only four of these five families because of a lack of the Ras and RasGAP genes. Small GTPases were conserved with common motifs, but GAPs exhibited higher and much more rapid divergence. On the basis of phylogenetic analysis of all small GTPases and GAPs in five eukaryotic organisms, we estimated that their ancestors had small sizes of small GTPases and GAPs and their large-scale expansions occurred after the divergence from their ancestors. Further investigation showed that genome duplications represented the major mechanism for such expansions. Nonsynonymous substitutions per site (Ka) and synonymous substitutions per site (Ks) analyses showed that most of the divergence due to a positive selection occurred in common ancestors, suggesting a major functional divergence in an ancient era.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore
| | | |
Collapse
|