1
|
Sádlová J, Yeo M, Mateus DS, Phelan J, Hai LA, Bhattacharyya T, Kurtev S, Sebesta O, Myskova J, Seblova V, Andersson B, Florez de Sessions P, Volf P, Miles MA. Comparative genomics of Leishmania donovani progeny from genetic crosses in two sand fly species and impact on the diversity of diagnostic and vaccine candidates. PLoS Negl Trop Dis 2024; 18:e0011920. [PMID: 38295092 PMCID: PMC10830044 DOI: 10.1371/journal.pntd.0011920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
Sand fly transmitted Leishmania species are responsible for severe, wide ranging, visceral and cutaneous leishmaniases. Genetic exchange can occur among natural Leishmania populations and hybrids can now be produced experimentally, with limitations. Feeding Phlebotomus orientalis or Phlebotomus argentipes on two strains of Leishmania donovani yielded hybrid progeny, selected using double drug resistance and fluorescence markers. Fluorescence activated cell sorting of cultured clones derived from these hybrids indicated diploid progeny. Multilocus sequence typing of the clones showed hybridisation and nuclear heterozygosity, although with inheritance of single haplotypes in a kinetoplastid target. Comparative genomics showed diversity of clonal progeny between single chromosomes, and extraordinary heterozygosity across all 36 chromosomes. Diversity between progeny was seen for the HASPB antigen, which has been noted previously as having implications for design of a therapeutic vaccine. Genomic diversity seen among Leishmania strains and hybrid progeny is of great importance in understanding the epidemiology and control of leishmaniasis. As an outcome of this study we strongly recommend that wider biological archives of different Leishmania species from endemic regions should be established and made available for comparative genomics. However, in parallel, performance of genetic crosses and genomic comparisons should give fundamental insight into the specificity, diversity and limitations of candidate diagnostics, vaccines and drugs, for targeted control of leishmaniasis.
Collapse
Affiliation(s)
- Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Matthew Yeo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London United Kingdom
| | - David S. Mateus
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London United Kingdom
| | - Jody Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London United Kingdom
| | - Le Anh Hai
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London United Kingdom
| | - Tapan Bhattacharyya
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London United Kingdom
| | - Stefan Kurtev
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London United Kingdom
| | - Ondrej Sebesta
- Laboratory of Confocal and Fluorescence Microscopy, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jitka Myskova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Veronika Seblova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Paola Florez de Sessions
- Genome Institute of Singapore, Biomedical Sciences Institutes, Agency for Science, Technology and Research, Singapore
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London United Kingdom
| |
Collapse
|
2
|
Douanne N, Dong G, Amin A, Bernardo L, Blanchette M, Langlais D, Olivier M, Fernandez-Prada C. Leishmania parasites exchange drug-resistance genes through extracellular vesicles. Cell Rep 2022; 40:111121. [PMID: 35858561 DOI: 10.1016/j.celrep.2022.111121] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Leishmania are eukaryotic parasites that have retained the ability to produce extracellular vesicles (EVs) through evolution. To date, it has been unclear if different DNA entities could be associated with Leishmania EVs and whether these could constitute a mechanism of horizontal gene transfer (HGT). Herein, we investigate the DNA content of EVs derived from drug-resistant parasites, as well as the EVs' potential to act as shuttles for DNA transfer. Next-generation sequencing and PCR assays confirm the enrichment of amplicons carrying drug-resistance genes associated with EVs. Transfer assays of drug-resistant EVs highlight a significant impact on the phenotype of recipient parasites induced by the expression of the transferred DNA. Recipient parasites display an enhanced growth and better control of oxidative stress. We provide evidence that eukaryotic EVs function as efficient mediators in HGT, thereby facilitating the transmission of drug-resistance genes and increasing the fitness of cells when encountering stressful environments.
Collapse
Affiliation(s)
- Noélie Douanne
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, 626 CIMIA Sicotte Street, Saint-Hyacinthe, QC J2S 2M2, Canada; The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - George Dong
- IDIGH, The Research Institute of the McGill University Health Centre, 2155 Guy Street, Montreal, QC H3H 2L9, Canada
| | - Atia Amin
- Department of Human Genetics, McGill University Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Lorena Bernardo
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, 626 CIMIA Sicotte Street, Saint-Hyacinthe, QC J2S 2M2, Canada; The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mathieu Blanchette
- School of Computer Science, McGill University, Montreal, QC H3A 0E9, Canada
| | - David Langlais
- Department of Human Genetics, McGill University Genome Centre, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill Research Centre on Complex Traits, Montreal, QC, Canada
| | - Martin Olivier
- IDIGH, The Research Institute of the McGill University Health Centre, 2155 Guy Street, Montreal, QC H3H 2L9, Canada; Department of Microbiology and Immunology, McGill Research Centre on Complex Traits, Montreal, QC, Canada.
| | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, 626 CIMIA Sicotte Street, Saint-Hyacinthe, QC J2S 2M2, Canada; The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; Department of Microbiology and Immunology, McGill Research Centre on Complex Traits, Montreal, QC, Canada.
| |
Collapse
|