1
|
Tandoh KZ, Avalos-Padilla Y, Ameyaw P, Laryea-Akrong EK, Awandare GA, Wilson MD, Quashie NB, Fernàndez-Busquets X, Duah-Quashie NO. Extracellular Vesicle Abundance, but Not a High Aggregation-Prone Peptide Cargo, Is Associated with Dihydroartemisinin Exposure in Plasmodium falciparum. Int J Mol Sci 2025; 26:3962. [PMID: 40362203 PMCID: PMC12072043 DOI: 10.3390/ijms26093962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 05/15/2025] Open
Abstract
Our understanding of the molecular mechanisms undergirding artemisinin (ART) resistance in Plasmodium falciparum is currently based on two organizing principles: reduced hemoglobin trafficking into the digestive food vacuole, resulting in lower levels of activated ART, and increased tolerance to ART-induced oxidative stress in the infected erythrocyte. We had previously proposed an extracellular vesicle (EV) export model of ART resistance in P. falciparum. This model predicts that EV abundance will be altered by ART exposure and that the peptide cargo of EVs from the ART-exposed condition will be enriched with aggregation-prone peptides. We tested the predictions of the EV export hypothesis in this study using in vitro culture assays of an ART-resistant transgenic line engineered on a 3D7 background (R561H) and a 3D7 knock-out line (PfVps60KO) with deficient EV production phenotype. EV enrichment was obtained from in vitro parasite culture supernatants via a series of ultracentrifugation and filtration steps, followed by size exclusion chromatography. A quality check on EVs was performed using dynamic light scattering. Liquid chromatography with tandem mass spectrometry was used to determine the proteome cargo from extracted EVs, and parasite peptides were queried for aggregation-prone tendency using open-access software. We report that dihydroartemisinin (DHA) exposure was positively correlated with EV abundance (coefficient estimate = 1038.58, confidence interval of 194.86-1882.30, and p-value = 0.018) and suggests that EV biogenesis is part of the parasite's response to DHA/ART. Furthermore, our findings suggest the expression of a non-constitutive DHA-induced alternate EV biogenesis pathway as the PfVps60KO was observed to produce the highest number of EVs under DHA exposure. Finally, we show that EVs from both ART-susceptible and resistant parasites under DHA exposure carry a cargo of Chorein N-terminal domain-containing protein (PF3D7_1021700) with a high aggregation-prone index (prion-like domain [PrLD] score = 26.5) out of nine identified parasite peptides. The former of these findings is in concordance with the EV export hypothesis, which posits that the removal of DHA/ART-induced aggregated and/or misfolded peptides is critical to the parasite's survival under DHA/ART exposure. This observation further implicates EVs in the development of the ART-resistant phenotype. However, the finding of one aggregation-prone peptide out of the nine parasite proteins in the EV cargo does not sufficiently support the EV export hypothesis. Future replicates of this study and further interrogations of the EV export hypothesis are needed.
Collapse
Affiliation(s)
- Kwesi Z. Tandoh
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana; (E.K.L.-A.); (G.A.A.); (N.B.Q.); (N.O.D.-Q.)
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana;
| | - Yunuen Avalos-Padilla
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona, Spain;
- Barcelona Institute for Global Health (ISGlobal, Hospital Clınic-Universitat de Barcelona), Rosselló 149-153, 08036 Barcelona, Spain
| | - Prince Ameyaw
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana;
| | - Elisabeth K. Laryea-Akrong
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana; (E.K.L.-A.); (G.A.A.); (N.B.Q.); (N.O.D.-Q.)
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana;
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana; (E.K.L.-A.); (G.A.A.); (N.B.Q.); (N.O.D.-Q.)
| | - Michael David Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
| | - Neils B. Quashie
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana; (E.K.L.-A.); (G.A.A.); (N.B.Q.); (N.O.D.-Q.)
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana;
- Centre for Tropical Clinical Pharmacology and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
| | - Xavier Fernàndez-Busquets
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona, Spain;
- Barcelona Institute for Global Health (ISGlobal, Hospital Clınic-Universitat de Barcelona), Rosselló 149-153, 08036 Barcelona, Spain
| | - Nancy O. Duah-Quashie
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana; (E.K.L.-A.); (G.A.A.); (N.B.Q.); (N.O.D.-Q.)
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana;
| |
Collapse
|
2
|
Tandoh KZ, Ibarra-Meneses AV, Langlais D, Olivier M, Torrecilhas AC, Fernandez-Prada C, Regev-Rudzki N, Duah-Quashie NO. Extracellular Vesicles: Translational Agenda Questions for Three Protozoan Parasites. Traffic 2024; 25:e12935. [PMID: 38629580 DOI: 10.1111/tra.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
The protozoan parasites Plasmodium falciparum, Leishmania spp. and Trypanosoma cruzi continue to exert a significant toll on the disease landscape of the human population in sub-Saharan Africa and Latin America. Control measures have helped reduce the burden of their respective diseases-malaria, leishmaniasis and Chagas disease-in endemic regions. However, the need for new drugs, innovative vaccination strategies and molecular markers of disease severity and outcomes has emerged because of developing antimicrobial drug resistance, comparatively inadequate or absent vaccines, and a lack of trustworthy markers of morbid outcomes. Extracellular vesicles (EVs) have been widely reported to play a role in the biology and pathogenicity of P. falciparum, Leishmania spp. and T. cruzi ever since they were discovered. EVs are secreted by a yet to be fully understood mechanism in protozoans into the extracellular milieu and carry a cargo of diverse molecules that reflect the originator cell's metabolic state. Although our understanding of the biogenesis and function of EVs continues to deepen, the question of how EVs in P. falciparum, Leishmania spp. and T. cruzi can serve as targets for a translational agenda into clinical and public health interventions is yet to be fully explored. Here, as a consortium of protozoan researchers, we outline a plan for future researchers and pose three questions to direct an EV's translational agenda in P. falciparum, Leishmania spp. and T. cruzi. We opine that in the long term, executing this blueprint will help bridge the current unmet needs of these medically important protozoan diseases in sub-Saharan Africa and Latin America.
Collapse
Affiliation(s)
- Kwesi Z Tandoh
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ana Victoria Ibarra-Meneses
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, Montreal, Canada
| | - David Langlais
- Department of Human Genetics, Dahdaleh Institute of Genomic Medicine, Montreal, Canada
- Department of Microbiology and Immunology, McGill Research Centre on Complex Traits, Montreal, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill Research Centre on Complex Traits, Montreal, Canada
- IDIGH, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| | - Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Universidade Federal de São Paulo (UNIFESP), Instituto de Ciências Ambientais, Químicas e Farmacêuticas, São Paulo, Brazil
| | - Christopher Fernandez-Prada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, Montreal, Canada
- Department of Microbiology and Immunology, McGill Research Centre on Complex Traits, Montreal, Canada
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nancy O Duah-Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
3
|
Zhang P, Luo H, Cui L, Deng J, Xie S, Liu D, Wang S, Si X, Wang Z, Wan Y, Zhang E, Li X, Zhang L. Assessment of solid-liquid equilibrium behavior and thermodynamic analysis of natural plant extracts artemisinin (Form Ⅰ) in twelve mono-solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
4
|
Tandoh KZ, Hagan OC, Wilson MD, Quashie NB, Duah-Quashie NO. Transcriptome-module phenotype association study implicates extracellular vesicles biogenesis in Plasmodium falciparum artemisinin resistance. Front Cell Infect Microbiol 2022; 12:886728. [PMID: 36061874 PMCID: PMC9437462 DOI: 10.3389/fcimb.2022.886728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Plasmodium falciparum malaria is still an important disease in sub-Saharan Africa (sSA). Great strides have been made in its control spear-headed by artemisinin (ART)-based combination therapies (ACTs). However, concerns about the imminent spread of ART-resistant (ARTr) malaria parasites to sSA threaten gains already made. Attempts to mitigate this risk have highlighted the need to discover novel P. falciparum drug targets. Therefore, studies to deepen our understanding of the biology of P. falciparum are needed. The role of extracellular vesicles (EVs) in the biology of malaria parasites is not fully understood. Recently, the ART resistance-associated transcriptional profile has been reported to involve several biological processes connected to vesicular trafficking, proteotoxic stress, erythrocyte remodelling, and mitochondrial metabolism. We explored a role for EVs in developing the P. falciparum ARTr phenotype using bulk RNA sequencing of unsynchronized parasite cultures under untreated, 0.1% dimethyl sulfoxide and 700nM dihydroartemisinin treated conditions for six hours. As pathway and gene ontology analysis is limited in its curated knowledge repertoire on EVs biogenesis in P. falciparum, we used a modular (gene set) analysis approach to explore whether an EVs biogenesis module is associated with the ARTr phenotype in P. falciparum. We first generated well-defined EVs modules of interest and used statistical tools to determine differences in their expression among the parasite and treatment conditions. Then we used gene set enrichment analysis to determine the strength of the association between each EVs module of interest and the ARTr phenotype. This transcriptome-module phenotype association study (TMPAS) represents a well-powered approach to making meaningful discoveries out of bulk gene expression data. We identified four EVs module of interest and report that one module representing gene sets with correlated expression to PF3D7_1441800 – involved with EVs biogenesis in P. falciparum - is associated with the ARTr phenotype (R539T_DHA_treated versus R539T_untreated: normalized enrichment score (NES) = 1.1830174, FDR q-value < 0.25; C580R_DHA_treated versus C580R_untreated: NES = 1.2457103, FDR q-value < 0.25). PF3D7_1441800 has been reported to reduce EVs production when knocked out in P. falciparum. Altogether, our findings suggest a role for EVs in developing ART resistance and warrant further studies interrogating this association.
Collapse
Affiliation(s)
- Kwesi Z. Tandoh
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- *Correspondence: Nancy O. Duah-Quashie, ; Kwesi Z. Tandoh,
| | - Oheneba C. Hagan
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Neils B. Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Centre for Tropical Clinical Pharmacology and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Nancy O. Duah-Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- *Correspondence: Nancy O. Duah-Quashie, ; Kwesi Z. Tandoh,
| |
Collapse
|
5
|
Lamba S, Roy A. DNA Topoisomerases in the Unicellular Protozoan Parasites: Unwinding the Mystery. Biochem Pharmacol 2022; 203:115158. [PMID: 35780829 DOI: 10.1016/j.bcp.2022.115158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
DNA topoisomerases are a group of enzymes present ubiquitously in all organisms from unicellular protozoan parasites to humans. These enzymes control the topological problems caused by DNA double helix in the cell during nucleic acid metabolism. Certain types of topoisomerases present in unicellular parasites are quite different from human topoisomerases (hTop) concerning structure, expression, and function. Many protozoan parasites causing fatal diseases have DNA topoisomerases, which play vital roles in their survival. Given the fact that the structures of the protozoan parasite topoisomerases are different from humans, DNA topoisomerase acts as an essential target for potent drug development for parasitic diseases. Moreover, various studies revealed the therapeutic potential of these drugs targeting the parasitic topoisomerases. Therefore, the characterization of parasitic topoisomerases is pivotal for the development of future potential drug targets. Considering the importance of this ubiquitous enzyme as a potential drug target, we describe in detail all the reported protozoan topoisomerases in an organized manner including Leishmania, Trypanosoma, Plasmodium, Giardia, Entamoeba, Babesia, Theileria, Crithidia, Cryptosporidium, Toxoplasma, etc. This review highlights the unique attributes associated with the structure and function of different types of DNA topoisomerases from the unicellular protozoan parasites. So, it would be beneficial for researchers to obtain awareness about the currently characterized topoisomerases and the ones that need better characterization, understand the structure-function relationship of parasitic topoisomerases, to develop the potent anti-parasitic drugs, and also provides a future platform for therapeutic development.
Collapse
Affiliation(s)
- Swati Lamba
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune-411007, India
| | - Amit Roy
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune-411007, India.
| |
Collapse
|