1
|
Vitkauskaite A, McDermott E, Lalor R, De Marco Verissimo C, Dehkordi MH, Thompson K, Owens P, Fearnhead HO, Dalton JP, Calvani NED. In vitro co-culture of Fasciola hepatica newly excysted juveniles (NEJs) with 3D HepG2 spheroids permits novel investigation of host-parasite interactions. Virulence 2025; 16:2482159. [PMID: 40132201 PMCID: PMC11938319 DOI: 10.1080/21505594.2025.2482159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/20/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025] Open
Abstract
Fasciola hepatica, or liver fluke, causes fasciolosis in humans and livestock. Following ingestion of vegetation contaminated with encysted parasites, metacercariae, newly excysted juveniles (NEJ) excyst in the small intestine and cross the intestinal wall. After penetrating the liver, the parasite begins an intra-parenchymal migratory and feeding phase that not only drives their rapid growth and development but also causes extensive haemorrhaging and immune pathology. Studies on infection are hindered by the difficulty in accessing these microscopic juvenile parasites in vivo. Thus, a simple and scalable in vitro culture system for parasite development is needed. Here, we find that two-dimensional (2D) culture systems using cell monolayers support NEJ growth to a limited extent. By contrast, co-culture of F. hepatica NEJ with HepG2-derived 3D spheroids, or "mini-livers," that more closely mimic the physiology and microenvironment of in vivo liver tissue, promoted NEJ survival, growth, and development. NEJ grazed on the peripheral cells of the spheroids, and they released temporally regulated digestive cysteine proteases, FhCL3, and FhCL1/2, similar to in vivo parasites. The 3D co-culture induced development of the NEJ gut and body musculature, and stimulated the tegument to elaborate spines and a variety of surface sensory/tango/chemoreceptor papillae (termed S1, S2, and S3); these were especially pronounced around the oral and ventral suckers that sense host chemical cues and secure the parasite in tissue. HepG2 3D spheroid/parasite co-culture methodologies should accelerate investigations into the understanding of F. hepatica NEJ developmental biology and studies on host-parasite interactions, and streamline the search for new anti-parasite interventions.
Collapse
Affiliation(s)
- Aiste Vitkauskaite
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, School of Natural Sciences, The University of Galway, Galway, The Republic of Ireland
| | - Emma McDermott
- Anatomy Imaging and Microscopy (AIM), Anatomy, School of Medicine, The University of Galway, Galway, The Republic of Ireland
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, School of Natural Sciences, The University of Galway, Galway, The Republic of Ireland
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, School of Natural Sciences, The University of Galway, Galway, The Republic of Ireland
| | - Mahshid H. Dehkordi
- Pharmacology and Therapeutics, School of Medicine, The University of Galway, Galway, The Republic of Ireland
| | - Kerry Thompson
- Anatomy Imaging and Microscopy (AIM), Anatomy, School of Medicine, The University of Galway, Galway, The Republic of Ireland
| | - Peter Owens
- Anatomy Imaging and Microscopy (AIM), Anatomy, School of Medicine, The University of Galway, Galway, The Republic of Ireland
| | - Howard Oliver Fearnhead
- Pharmacology and Therapeutics, School of Medicine, The University of Galway, Galway, The Republic of Ireland
| | - John Pius Dalton
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, School of Natural Sciences, The University of Galway, Galway, The Republic of Ireland
| | - Nichola Eliza Davies Calvani
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, School of Natural Sciences, The University of Galway, Galway, The Republic of Ireland
| |
Collapse
|
2
|
Castañeda S, Acosta CP, Vasquez-A LR, Patiño LH, Mejía R, Ramírez JD. Molecular detection of intestinal parasites in a rural community of Colombia: A one health approach to explore potential environmental-zoonotic transmission. Zoonoses Public Health 2024; 71:723-735. [PMID: 38688683 DOI: 10.1111/zph.13138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
AIMS Protozoan and helminth parasitic infections pose significant public health challenges, especially in developing countries with rural populations marked by suboptimal hygiene practices and socio-economic constraints. The parasites are the etiological agents of these infections and have a notably elevated global prevalence. Therefore, this study focuses on estimating the frequency and transmission dynamics of several parasitic species, including Blastocystis, Giardia, Cryptosporidium spp., Entamoeba histolytica, Ascaris lumbricoides, Trichuris trichiura, Taenia spp. and hookworms, within a rural community in southwest Colombia with a particular emphasis on the One Health framework, considering environmental and zoonotic transmission potentials. METHODS AND RESULTS This study involved the analysis of 125 samples, encompassing human participants (n = 99), their domestic pets (dogs) (n = 24) and water sources (n = 2). Parasite detection was carried out utilizing a combination of microscopy and molecular techniques. Furthermore, the characterization of Blastocystis subtypes (STs) was achieved through Oxford Nanopore sequencing of the rRNA-18S gene. The investigation also entailed the examination of potential associations between intestinal parasitism and various sociodemographic factors. Results revealed a high frequency of parasitic infections when employing molecular methods, with Blastocystis (n = 109/87%), Giardia (n = 20/16%), Ancylostoma duodenale (n = 28/22%), Ancylostoma ceylanicum (n = 7/5.6%), E. histolytica (n = 6/4.8%), Cryptosporidium spp. (n = 12/9.6%) and even Taenia (n = 1/0.8%) detected. Cryptosporidium spp. was also identified in water samples. Coinfections were prevalent, with 57% (n = 70) of samples exhibiting single-parasite infections and 43% (n = 53) showing various degrees of polyparasitism, emphasizing the complexity of transmission dynamics. Blastocystis subtyping, conducted via Oxford Nanopore sequencing, revealed a diversity of subtypes and coexistence patterns, with ST2 being the most prevalent. CONCLUSIONS This research underscores the importance of using molecular techniques for frequency estimation, particularly emphasizing the relevance of zoonotic transmission in parasitic infections. It highlights the significance of the One Health approach in comprehending the circulation of parasites among animals, humans and environmental sources, thereby directly impacting public health and epidemiological surveillance.
Collapse
Affiliation(s)
- Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Claudia Patricia Acosta
- Grupo de investigación en Genética Humana, Departamento de Ciencias Fisiológicas, Facultad de Ciencias de la Salud, Universidad del Cauca, Popayán, Colombia
| | - Luis Reinel Vasquez-A
- Centro de Estudios en Microbiología y Parasitología, Facultad de Ciencias de la Salud, Universidad del Cauca, Popayán, Colombia
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Rojelio Mejía
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York city, New York, USA
| |
Collapse
|
3
|
Bogza A, King IL, Maurice CF. Worming into infancy: Exploring helminth-microbiome interactions in early life. Cell Host Microbe 2024; 32:639-650. [PMID: 38723604 DOI: 10.1016/j.chom.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 06/06/2024]
Abstract
There is rapidly growing awareness of microbiome assembly and function in early-life gut health. Although many factors, such as antibiotic use and highly processed diets, impinge on this process, most research has focused on people residing in high-income countries. However, much of the world's population lives in low- and middle-income countries (LMICs), where, in addition to erratic antibiotic use and suboptimal diets, these groups experience unique challenges. Indeed, many children in LMICs are infected with intestinal helminths. Although helminth infections are strongly associated with diverse developmental co-morbidities and induce profound microbiome changes, few studies have directly examined whether intersecting pathways between these components of the holobiont shape health outcomes in early life. Here, we summarize microbial colonization within the first years of human life, how helminth-mediated changes to the gut microbiome may affect postnatal growth, and why more research on this relationship may improve health across the lifespan.
Collapse
Affiliation(s)
- Andrei Bogza
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; McGill Centre for Microbiome Research, McGill University, Montreal, QC, Canada; Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, Montreal, QC, Canada
| | - Irah L King
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; McGill Centre for Microbiome Research, McGill University, Montreal, QC, Canada; Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Corinne F Maurice
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; McGill Centre for Microbiome Research, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, Montreal, QC, Canada.
| |
Collapse
|
4
|
Sieng S, Chen P, Wang N, Xu JY, Han Q. Toxocara canis-induced changes in host intestinal microbial communities. Parasit Vectors 2023; 16:462. [PMID: 38115028 PMCID: PMC10729416 DOI: 10.1186/s13071-023-06072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Toxocara canis is a roundworm that resides in the gastrointestinal tract of dogs and causes various pathological changes. The dog's intestinal system consists of a diverse and dynamic bacterial community that has extensive effects on intestinal physiology, immunity and metabolics. In the case of intestinal parasites, interactions with the host intestinal flora are inevitable during the process of parasitism. METHODS We studied the role of T. canis in regulating the composition and diversity of the intestinal flora of the host by high-throughput sequencing of the 16S ribosomal RNA gene and various bioinformatics analyses. RESULTS The α-diversity analysis showed that Toxocara canis infection resulted in a significant decrease in the abundance and diversity of host intestinal flora. The β-diversity analysis showed that the intestinal flora of infected dogs was similar to that carried by T. canis. Analysis of the microflora composition and differences at the phylum level showed that the ratio of Firmicutes to Bacteroidetes (F/B ratio) increased with T. canis infection. Analysis of species composition and differences at the genus level revealed that the proportion of some of the pathogenic bacteria, such as Clostridium sensu stricto and Staphylococcus, increased after T. canis infection. CONCLUSIONS Toxocara canis infection affected the composition and diversity of the flora in the host intestinal tract. These results not only shed light on the potential mechanism of T. canis invasion and long-term survival in the intestinal tract, but also provide a new basis for the development of anthelmintic drugs.
Collapse
Affiliation(s)
- Soben Sieng
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, 570228, Hainan, People's Republic of China
- One Health Institute, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Ping Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, 570228, Hainan, People's Republic of China
- One Health Institute, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Na Wang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, 570228, Hainan, People's Republic of China
- One Health Institute, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Jing-Yun Xu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, 570228, Hainan, People's Republic of China.
- One Health Institute, Hainan University, Haikou, 570228, Hainan, People's Republic of China.
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, 570228, Hainan, People's Republic of China.
- One Health Institute, Hainan University, Haikou, 570228, Hainan, People's Republic of China.
| |
Collapse
|