1
|
Kesibi D, Rotondi M, Edgell H, Tamim H. The association between age at natural menopause and risk of asthma among postmenopausal women from the Canadian Longitudinal Study on Aging. Menopause 2024; 31:1069-1077. [PMID: 39470604 DOI: 10.1097/gme.0000000000002443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
OBJECTIVE This study aimed to investigate the association between age at natural menopause and incidence of asthma among postmenopausal Canadian women. METHODS Women between the ages of 45-85 yr were followed for a 10-yr period. Analysis was restricted to naturally postmenopausal women who are nonsmokers and did not have asthma prior to menopause. Age at natural menopause was examined using the following categories: 40-44, 45-49, 50-54 (reference), and ≥55. Survival analysis was utilized to determine time to onset of asthma. Multivariable Cox regression analysis was performed to assess the relationship between age at natural menopause and asthma after adjusting for covariates. RESULTS The multivariable Cox regression analysis showed a 30% decreased risk of asthma in women with age at natural menopause of 40-44 yr compared with age at natural menopause of 50-54 yr with a hazard ratio of 0.7 (95% confidence interval: 0.49-0.95). CONCLUSIONS Women with later ages at natural menopause may be at increased risk for asthma.
Collapse
Affiliation(s)
- Durmalouk Kesibi
- From the School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
2
|
Eliyahu E, Katz MG, Vincek A, Freage-Kahn L, Ravvin S, Tal S, Grage H, Shtraizent N, Barak T, Arkush B. Effects of Hormone Replacement Therapy on Women's Lung Health and Disease. Pulm Ther 2023; 9:461-477. [PMID: 37815696 PMCID: PMC10721592 DOI: 10.1007/s41030-023-00240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023] Open
Abstract
This review provides an overview of menopausal hormone therapy and pulmonary disease risk, with a focus on the effect of hormone replacement therapy (HRT) on pulmonary function and its relation to lung diseases. This summary is based on authors' knowledge in the field of HRT and supplemented by a PubMed search using the terms "menopause hormone therapy," "asthma", "lung cancer", "chronic obstructive pulmonary disease", "lung function", and "pulmonary hypertension". Available evidence indicates that there is limited research on the role of sex hormones in the susceptibility, severity, and progression of chronic respiratory diseases. However, some studies suggest that the hormonal changes that occur during the menopausal transition may have an impact on pulmonary function and respiratory diseases. Women are in need of convenient access to a safe and effective modality for personalized HRT based on an artificial intelligence (AI)-driven platform that will enable them to receive personalized hormonal treatment through frequent, convenient, and accurate measurements of hormone levels in peripheral blood.
Collapse
Affiliation(s)
- Efrat Eliyahu
- Aveta.Life, Hoboken, NJ, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, Box 1030, New York, NY, 10029-6574, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Michael G Katz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, Box 1030, New York, NY, 10029-6574, USA
- Department of Pediatric Cardiac Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Vincek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, Box 1030, New York, NY, 10029-6574, USA
| | | | - Shana Ravvin
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, Box 1030, New York, NY, 10029-6574, USA
| | - Smadar Tal
- Department of Animal Sciences, Tel-Hai College, Qiryat Shemona, Israel
| | | | | | | | | |
Collapse
|
3
|
Liang H, Li D, Zhu Y, Zhou X, Lin F, Jing D, Su X, Pan P, Zhang Y. Associations Between Reproductive Factors and the Risk of Adult-Onset Asthma: A Prospective Cohort Study of European Ancestry. J Gen Intern Med 2023; 38:2354-2363. [PMID: 36988870 PMCID: PMC10407004 DOI: 10.1007/s11606-023-08173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Multiple studies showed sex discrepancies in the prevalence, incidence, and disease control of asthma. The relationships between different reproductive factors and the risk of asthma in females remain uncertain. DESIGN A prospective cohort study recruited 239,701 female participants from the UK Biobank. The Cox proportional hazard model and multiple adjusted restricted cubic splines were used to evaluate the association between each reproductive factor and the risk of adult-onset asthma. KEY RESULTS We observed that the association of age at menarche and age of menopause with adult-onset asthma risk presented as U-shaped, with multiple adjusted HRs for age at menarche being 1.129 (95% CI, 1.038-1.228) for ≤ 11 years old and 1.157 (95% CI, 1.058-1.265) for ≥ 15 years old referenced to 13 years old, and for age at menopause being 1.368 (1.237-1.512) for ≤ 46 years old and 1.152 (1.026-1.294) for ≥ 55 years old referenced to 50-52 years old. Early age at first live birth (≤ 20 years old), a greater number of miscarriages (≥ 2) or stillbirths (≥ 2), more children (≥ 4), and shorter reproductive years (≤ 32 years) were associated with elevated risk of asthma. In addition, history of hysterectomy or oophorectomy was associated with increased risk of adult-onset asthma, particularly in those with simultaneous hysterectomy and oophorectomy (HR, 1.239; 95% CI, 1.063-1.445). For exogenous sex hormones, hormone replacement therapy (HR, 1.482; 95% CI, 1.394-1.574) was identified to be associated with elevated risk of adult-onset asthma. CONCLUSIONS This study not only demonstrated significant associations between multiple reproductive factors and the risk of adult-onset asthma in a female's later life, but also found that history of hysterectomy or oophorectomy, as well as hormone replacement therapy, was linked to an elevated incidence of adult-onset asthma. Our findings highlighted the significance of reproductive factors in the development of asthma in female populations.
Collapse
Affiliation(s)
- Huaying Liang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China
| | - Dianwu Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China
- Department of Pulmonary and Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, 412001, Hunan, China
| | - Yiqun Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China
| | - Xin Zhou
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China
| | - Fengyu Lin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China
| | - Danrong Jing
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Xiaoli Su
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China.
| | - Yan Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China.
| |
Collapse
|
4
|
Zhu M, Xu W, Jiang J, Wang Y, Guo Y, Yang R, Chang Y, Zhao B, Wang Z, Zhang J, Wang T, Shangguan L, Wang S. Peiminine Suppresses RANKL-Induced Osteoclastogenesis by Inhibiting the NFATc1, ERK, and NF-κB Signaling Pathways. Front Endocrinol (Lausanne) 2021; 12:736863. [PMID: 34630331 PMCID: PMC8498341 DOI: 10.3389/fendo.2021.736863] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoclasts (OCs) play an important role in osteoporosis, a disease that is mainly characterized by bone loss. In our research, we aimed to identify novel approach for regulating osteoclastogenesis and thereby treating osteoporosis. Previous studies have set a precedent for screening traditional Chinese herbal extracts for effective inhibitors. Peiminine is an alkaloid extracted from the bulb of Fritillaria thunbergii Miq that reportedly has anticancer and anti-inflammatory effects. Thus, the potential inhibitory effect of peiminine on OC differentiation was investigated via a series of experiments. According to the results, peiminine downregulated the levels of specific genes and proteins in vitro and consequently suppressed OC differentiation and function. Based on these findings, we further investigated the underlying molecular mechanisms and identified the NF-κB and ERK1/2 signaling pathways as potential targets of peiminine. In vivo, peiminine alleviated bone loss in an ovariectomized mouse model.
Collapse
Affiliation(s)
- Mengbo Zhu
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Wenbin Xu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Jiuzhou Jiang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Yining Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanjing Guo
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Biochemistry, Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Ruijia Yang
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Biochemistry, Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Yaqiong Chang
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Bin Zhao
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhenyu Wang
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianfeng Zhang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Te Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Shaowei Wang, ; Liqin Shangguan, ; Te Wang,
| | - Liqin Shangguan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- *Correspondence: Shaowei Wang, ; Liqin Shangguan, ; Te Wang,
| | - Shaowei Wang
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Biochemistry, Basic Medical College, Shanxi Medical University, Taiyuan, China
- *Correspondence: Shaowei Wang, ; Liqin Shangguan, ; Te Wang,
| |
Collapse
|
5
|
Affiliation(s)
- Fernando Holguin
- Anschutz Medical CampusUniversity of Colorado at DenverAurora, Colorado
| |
Collapse
|
6
|
Raherison C, Hamzaoui A, Nocent-Ejnaini C, Essari LA, Ouksel H, Zysman M, Prudhomme A. [Woman's asthma throughout life: Towards a personalized management?]. Rev Mal Respir 2020; 37:144-160. [PMID: 32057504 DOI: 10.1016/j.rmr.2019.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/18/2019] [Indexed: 11/30/2022]
Abstract
In a woman's life, asthma can affect her in a variety of ways, with the onset of premenstrual asthma currently under-diagnosed. It is estimated that about 20% of women with asthma have premenstrual asthma, which is more common in patients with severe asthma. Women with asthma are at high risk of exacerbations and of severe asthma. Asthma is the most common chronic disease during pregnancy with potential maternal and foetal complications. Asthma medications are safe for the foetus and it is essential to continue pre-existing treatment and adapt it to the progress of asthma during the pregnancy. Sex steroids modulate the structure and function of bronchial and immune cells. Understanding their role in asthma pathogenesis is complicated by the ambivalent effects of bronchodilating and pro-inflammatory oestrogens as well as the diversity of response to their association with progesterone. Menopausal asthma is a clinical entity and is part of one of the phenotypes of severe non-allergic and low steroid-sensitive asthma. Targeted assessment of the domestic and professional environment allows optimization of asthma management.
Collapse
Affiliation(s)
- C Raherison
- Service des maladies respiratoires, pôle cardiothoracique, INSERM U1219, université de Bordeaux, CHU Bordeaux, 146, rue Léo-Saignat, 33604 Bordeaux, France.
| | - A Hamzaoui
- Pavillon B, unité de recherche UR12 SP15, hôpital Abderrahmen Mami, faculté de médecine, université de Tunis El Manar, Ariana, Tunisie
| | | | - L-A Essari
- Département de pneumologie, CHRU de Nancy, rue du Morvan, 54500 Vandœuvre-lès-Nancy, France
| | - H Ouksel
- Département de pneumologie, CHU d'Angers, Angers, France
| | - M Zysman
- UMR_S955, université Paris-Est Créteil (UPEC), 94000 Créteil, France; Inserm, U955, Team 4, 94000 Créteil, France
| | - A Prudhomme
- Service de pneumologie, CHG Tarbes, Tarbes, France
| | | |
Collapse
|
7
|
Huang YC, Yuan ZF, Yang CH, Shen YJ, Lin JY, Lai CJ. Estrogen Modulates the Sensitivity of Lung Vagal C Fibers in Female Rats Exposed to Intermittent Hypoxia. Front Physiol 2018; 9:847. [PMID: 30026705 PMCID: PMC6041459 DOI: 10.3389/fphys.2018.00847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/14/2018] [Indexed: 01/03/2023] Open
Abstract
Obstructive sleep apnea is mainly characterized by intermittent hypoxia (IH), which is associated with hyperreactive airway diseases and lung inflammation. Sensitization of lung vagal C fibers (LVCFs) induced by inflammatory mediators may play a central role in the pathogenesis of airway hypersensitivity. In females, estrogen interferes with inflammatory signaling pathways that may modulate airway hyperreactivity. In this study, we investigated the effects of IH on the reflex and afferent responses of LVCFs to chemical stimulants and lung inflammation in adult female rats, as well as the role of estrogen in these responses. Intact and ovariectomized (OVX) female rats were exposed to room air (RA) or IH for 14 consecutive days. On day 15, IH enhanced apneic responses to right atrial injection of chemical stimulants of LVCFs (e.g., capsaicin, phenylbiguanide, and α,β-methylene-ATP) in intact anesthetized females. Rats subjected to OVX prior to IH exposure exhibited an augmented apneic response to the same dose of stimulants compared with rats subjected to other treatments. Apneic responses to the stimulants were completely abrogated by bilateral vagotomy or perivagal capsaicin treatment, which blocked the neural conduction of LVCFs. Electrophysiological experiments revealed that in IH-exposed rats, OVX potentiated the excitability of LVCFs to stimulants. Moreover, LVCF hypersensitivity in rats subjected to OVX prior to IH exposure was accompanied by enhanced lung inflammation, which was reflected by elevated inflammatory cell infiltration in bronchoalveolar lavage fluid, lung lipid peroxidation, and protein expression of inflammatory cytokines. Supplementation with 17β-estradiol (E2) at a low concentration (30 μg/ml) but not at high concentrations (50 and 150 μg/ml) prevented the augmenting effects of OVX on LVCF sensitivity and lung inflammation caused by IH. These results suggest that ovarian hormones prevent the enhancement of LVCF sensitivity and lung inflammation by IH in female rats, which are related to the effect of low-dose estrogen.
Collapse
Affiliation(s)
- Ya-Chen Huang
- Department of Chest Section, Buddhist Tzu Chi General Hospital, Hualien City, Taiwan.,Master Program in Physiological and Anatomical Medicine, School of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Zung Fan Yuan
- Master Program in Physiological and Anatomical Medicine, School of Medicine, Tzu Chi University, Hualien City, Taiwan.,Department of Physiology, Tzu Chi University, Hualien City, Taiwan
| | - Chang-Huan Yang
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
| | - Yan-Jhih Shen
- Ph.D. Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jyun-Yi Lin
- Department of Chest Section, Buddhist Tzu Chi General Hospital, Hualien City, Taiwan.,Master Program in Physiological and Anatomical Medicine, School of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Ching Jung Lai
- Master Program in Physiological and Anatomical Medicine, School of Medicine, Tzu Chi University, Hualien City, Taiwan.,Department of Physiology, Tzu Chi University, Hualien City, Taiwan
| |
Collapse
|
8
|
Mahemuti L, Chen Q, Coughlan MC, Zhang M, Florian M, Mailloux RJ, Cao XL, Scoggan KA, Willmore WG, Jin X. Bisphenol A exposure alters release of immune and developmental modulators and expression of estrogen receptors in human fetal lung fibroblasts. J Environ Sci (China) 2016; 48:11-23. [PMID: 27745655 DOI: 10.1016/j.jes.2016.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 06/06/2023]
Abstract
Bisphenol A (BPA) has been shown to exert biological effects through estrogen receptor (ER)-dependent and ER-independent mechanisms. Recent studies suggest that prenatal exposure to BPA may increase the risk of childhood asthma. To investigate the underlying mechanisms in the actions of BPA, human fetal lung fibroblasts (hFLFs) were exposed to varying doses of BPA in culture for 24hr. Effects of BPA on localization and uptake of BPA, cell viability, release of immune and developmental modulators, cellular localization and expression of ERα, ERβ and G-protein coupled estrogen receptor 30 (GPR30), and effects of ERs antagonists on BPA-induced changes in endothelin-1 (ET-1) release were examined. BPA at 0.01-100μmol/L caused no changes in cell viability after 24hr of exposure. hFLFs expresses all three ERs. BPA had no effects on either cellular distribution or protein expression of ERα, however, at 100μmol/L (or 23μmol/L intracellular BPA) increased ERβ protein levels in the cytoplasmic fractions and GPR30 protein levels in the nuclear fractions. These paralleled with increased release of growth differentiation factor-15, decreased phosphorylation of nuclear factor kappa B p65 at serine 536, and decreased release of ET-1, interleukin-6, and interferon gamma-induced protein 10. ERs antagonists had no effects on BPA-induced decrease in ET-1 release. These data suggest that BPA at 100μmol/L altered the release of immune and developmental modulators in hFLFs, which may negatively influence fetal lung development, maturation, and susceptibility to environmental stressors, although the role of BPA in childhood asthma remains to be confirmed in in vivo studies.
Collapse
Affiliation(s)
- Laziyan Mahemuti
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada; Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Ontario, Canada.
| | - Qixuan Chen
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada
| | - Melanie C Coughlan
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada
| | - Min Zhang
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada
| | - Maria Florian
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada; Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ryan J Mailloux
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada; Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Xu-Liang Cao
- Food Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ontario, Canada
| | - Kylie A Scoggan
- Nutrition Research Division, Bureau of Nutritional Sciences, Food Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada; Sector Strategies Division, Risk Management Bureau, Safe Environments Directorate, HECSB, Health Canada, Ottawa, Ontario, Canada
| | - William G Willmore
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Xiaolei Jin
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
9
|
L-Type Calcium Channels Modulation by Estradiol. Mol Neurobiol 2016; 54:4996-5007. [PMID: 27525676 DOI: 10.1007/s12035-016-0045-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/08/2016] [Indexed: 01/29/2023]
Abstract
Voltage-gated calcium channels are key regulators of brain function, and their dysfunction has been associated with multiple conditions and neurodegenerative diseases because they couple membrane depolarization to the influx of calcium-and other processes such as gene expression-in excitable cells. L-type calcium channels, one of the three major classes and probably the best characterized of the voltage-gated calcium channels, act as an essential calcium binding proteins with a significant biological relevance. It is well known that estradiol can activate rapidly brain signaling pathways and modulatory/regulatory proteins through non-genomic (or non-transcriptional) mechanisms, which lead to an increase of intracellular calcium that activate multiple kinases and signaling cascades, in the same way as L-type calcium channels responses. In this context, estrogens-L-type calcium channels signaling raises intracellular calcium levels and activates the same signaling cascades in the brain probably through estrogen receptor-independent modulatory mechanisms. In this review, we discuss the available literature on this area, which seems to suggest that estradiol exerts dual effects/modulation on these channels in a concentration-dependent manner (as a potentiator of these channels in pM concentrations and as an inhibitor in nM concentrations). Indeed, estradiol may orchestrate multiple neurotrophic responses, which open a new avenue for the development of novel estrogen-based therapies to alleviate different neuropathologies. We also highlight that it is essential to determine through computational and/or experimental approaches the interaction between estradiol and L-type calcium channels to assist these developments, which is an interesting area of research that deserves a closer look in future biomedical research.
Collapse
|
10
|
Lee K. Is FEV(1) an indicator of low bone mineral density in adults? The Fifth Korea National Health and Nutrition Examination Survey. J Bone Miner Metab 2015; 33:335-41. [PMID: 24849737 DOI: 10.1007/s00774-014-0595-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/09/2014] [Indexed: 12/01/2022]
Abstract
The association between forced expiratory volume in 1 s (FEV1) and bone mineral density (BMD) is heterogeneous in population-based studies. This study aimed to investigate this relationship when sex and menopausal status in women, BMD sites, and anthropometric measures were taken into account. In 3,975 Koreans (1,783 men, 662 premenopausal women, 1,530 postmenopausal women, aged 40-91 years) participating in the Fifth Korea National Health and Nutrition Examination Survey in 2010-2011, this relationship for BMD at femur (total and neck) and lumbar spine was examined in each subgroup after adjusting for age, smoking, and alcohol habit, physical activity, calcium intake, osteoporosis treatment, and anthropometry (weight and height, height and BMI, or height, lean mass, and fat mass). Airflow limitation (FEV(1) ≥ 80, 50-80, and < 50% of predicted FEV(1)) and lower vs. higher BMD using BMD values at site and subgroup-specific 10 percentile of BMD distribution were defined. In multiple regression analysis, the association between FEV(1) and BMD was significant in premenopausal women [B = 0.027-0.031 (total femur), 0.035-0.037 (femoral neck), p < 0.05] but not in other subgroups. In logistic regression analysis, severe airflow limitation was associated with lower BMD in postmenopausal women [OR 2.21-2.37 (total femur), 2.25 (femoral neck), p < 0.05] and premenopausal women (OR 2.14, 95% CI, 1.01-4.50 for femoral neck in height and body composition-adjusted model), but not exhibit these associations in men. As a whole, the associations with spine BMD were non-significant. Therefore, the associations were sex-, menopausal status in women-, and BMD site-specific, while the types of anthropometry had similar effects on the associations.
Collapse
Affiliation(s)
- Kayoung Lee
- Department of Family Medicine, Busan Paik Hospital, College of Medicine, Inje University, 633-165 Kaegum-dong, Busan Jin-Gu, Busan, 614-735, South Korea,
| |
Collapse
|
11
|
Bønnelykke K, Raaschou-Nielsen O, Tjønneland A, Ulrik CS, Bisgaard H, Andersen ZJ. Postmenopausal hormone therapy and asthma-related hospital admission. J Allergy Clin Immunol 2015; 135:813-6.e5. [DOI: 10.1016/j.jaci.2014.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 11/28/2022]
|
12
|
Machado MN, Figueirôa SFDS, Mazzoli-Rocha F, Valença SDS, Zin WA. Papain-induced experimental pulmonary emphysema in male and female mice. Respir Physiol Neurobiol 2014; 200:90-6. [DOI: 10.1016/j.resp.2014.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 06/02/2014] [Accepted: 06/06/2014] [Indexed: 12/17/2022]
|
13
|
Montaño LM, Espinoza J, Flores-Soto E, Chávez J, Perusquía M. Androgens are bronchoactive drugs that act by relaxing airway smooth muscle and preventing bronchospasm. J Endocrinol 2014; 222:1-13. [PMID: 24781253 DOI: 10.1530/joe-14-0074] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Changes in the androgen levels in asthmatic men may be associated with the severity of asthma. Androgens induce a nongenomic relaxation in airway smooth muscle, but the underlying mechanisms remain unclear. The aim of this study was to investigate the potential bronchorelaxing action of testosterone (TES) and its metabolites (5α- and 5β-dihydrotestosterone (DHT). A preventive effect on ovalbumin (OVA)-induced bronchospasm was observed in sensitized guinea pigs for each androgen. Androgens were studied in response to bronchoconstrictors: carbachol (CCh) and KCl in isolated trachea rings with and without epithelium from non-sensitized and sensitized animals as well as on OVA-induced contraction. Androgens concentration-dependently abolished the contraction in response to CCh, KCl, and OVA. There were significant differences in the sensitivity to the relaxation induced by each androgen. 5β-DHT was more potent for relaxing KCl-induced contraction, while TES and 5α-DHT were more potent for CCh- and OVA-induced contraction. No differences were found in preparations with and without epithelium or in the presence of a nitric oxide (NO) synthase inhibitor or an inhibitor of K(+) channels. These data indicate the absence of involvement of the epithelium-, NO- and K(+) channels-dependent pathway in androgen-induced relaxation. However, in dissociated tracheal myocytes loaded with the calcium-binding fluorescent dye Fura -2, physiological concentrations of androgens decreased the KCl-induced [Ca(2+)]i increment. 5β-DHT was the most potent at decreasing KCl-induced [Ca(2+)]i increment and preventing bronchospasm. We suggest that androgen-induced brochorelaxation was mediated via decreased Ca(2+) influx through L-type Ca(2+)channels but additional Ca(2+) entry blockade may be involved. Molecular changes in androgen structure may determine its preferential site of action.
Collapse
Affiliation(s)
- Luis M Montaño
- Departamento de Biología Celular y FisiologíaInstituto de Investigaciones BiomédicasDepartamento de FarmacologíaFacultad de Medicina, Universidad Nacional Autónoma de México, Mexico, Distrito Federal 04510, MexicoDepartamento de Investigación en Hiperreactividad BronquialInstituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico, Distrito Federal, Mexico
| | - Julia Espinoza
- Departamento de Biología Celular y FisiologíaInstituto de Investigaciones BiomédicasDepartamento de FarmacologíaFacultad de Medicina, Universidad Nacional Autónoma de México, Mexico, Distrito Federal 04510, MexicoDepartamento de Investigación en Hiperreactividad BronquialInstituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico, Distrito Federal, Mexico
| | - Edgar Flores-Soto
- Departamento de Biología Celular y FisiologíaInstituto de Investigaciones BiomédicasDepartamento de FarmacologíaFacultad de Medicina, Universidad Nacional Autónoma de México, Mexico, Distrito Federal 04510, MexicoDepartamento de Investigación en Hiperreactividad BronquialInstituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico, Distrito Federal, Mexico
| | - Jaime Chávez
- Departamento de Biología Celular y FisiologíaInstituto de Investigaciones BiomédicasDepartamento de FarmacologíaFacultad de Medicina, Universidad Nacional Autónoma de México, Mexico, Distrito Federal 04510, MexicoDepartamento de Investigación en Hiperreactividad BronquialInstituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico, Distrito Federal, Mexico
| | - Mercedes Perusquía
- Departamento de Biología Celular y FisiologíaInstituto de Investigaciones BiomédicasDepartamento de FarmacologíaFacultad de Medicina, Universidad Nacional Autónoma de México, Mexico, Distrito Federal 04510, MexicoDepartamento de Investigación en Hiperreactividad BronquialInstituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico, Distrito Federal, Mexico
| |
Collapse
|