1
|
Yang X, Liechti MD, Kanber B, Sudre CH, Castellazzi G, Zhang J, Yiannakas MC, Gonzales G, Prados F, Toosy AT, Gandini Wheeler-Kingshott CAM, Panicker JN. White Matter Magnetic Resonance Diffusion Measures in Multiple Sclerosis with Overactive Bladder. Brain Sci 2024; 14:975. [PMID: 39451989 PMCID: PMC11506346 DOI: 10.3390/brainsci14100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Lower urinary tract (LUT) symptoms are reported in more than 80% of patients with multiple sclerosis (MS), most commonly an overactive bladder (OAB). The relationship between brain white matter (WM) changes in MS and OAB symptoms is poorly understood. OBJECTIVES We aim to evaluate (i) microstructural WM differences across MS patients (pwMS) with OAB symptoms, patients without LUT symptoms, and healthy subjects using diffusion tensor imaging (DTI), and (ii) associations between clinical OAB symptom scores and DTI indices. METHODS Twenty-nine female pwMS [mean age (SD) 43.3 years (9.4)], including seventeen with OAB [mean age (SD) 46.1 years (8.6)] and nine without LUT symptoms [mean age (SD) 37.5 years (8.9)], and fourteen healthy controls (HCs) [mean age (SD) 48.5 years (20)] were scanned in a 3T MRI with a DTI protocol. Additionally, clinical scans were performed for WM lesion segmentation. Group differences in fractional anisotropy (FA) were evaluated using tract-based spatial statistics. The Urinary Symptom Profile questionnaire assessed OAB severity. RESULTS A statistically significant reduction in FA (p = 0.004) was identified in microstructural WM in pwMS, compared with HCs. An inverse correlation was found between FA in frontal and parietal WM lobes and OAB scores (p = 0.021) in pwMS. Areas of lower FA, although this did not reach statistical significance, were found in both frontal lobes and the rest of the non-dominant hemisphere in pwMS with OAB compared with pwMS without LUT symptoms (p = 0.072). CONCLUSIONS This study identified that lesions affecting different WM tracts in MS can result in OAB symptoms and demonstrated the role of the WM in the neural control of LUT functions. By using DTI, the association between OAB symptom severity and WM changes were identified, adding knowledge to the current LUT working model. As MS is predominantly a WM disease, these findings suggest that regional WM involvement, including of the anterior corona radiata, anterior thalamic radiation, superior longitudinal fasciculus, and superior frontal-occipital fasciculus and a non-dominant prevalence in WM, can result in OAB symptoms. OAB symptoms in MS correlate with anisotropy changes in different white matter tracts as demonstrated by DTI. Structural impairment in WM tracts plays an important role in LUT symptoms in MS.
Collapse
Affiliation(s)
- Xixi Yang
- Department of Neurology, Xuan Wu Hospital of Capital Medical University, Beijing 100053, China
- Department of Brain Repair and Rehabilitation, Faculty of Brain Sciences, Queen Square Institute of Neurology, University College London, London WC1E 6BT, UK; (M.D.L.); (J.N.P.)
- Department of Uro-Neurology, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK;
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London WC1E 6BT, UK; (B.K.); (G.C.); (M.C.Y.); (F.P.); (A.T.T.); (C.A.M.G.W.-K.)
| | - Martina D. Liechti
- Department of Brain Repair and Rehabilitation, Faculty of Brain Sciences, Queen Square Institute of Neurology, University College London, London WC1E 6BT, UK; (M.D.L.); (J.N.P.)
- Department of Uro-Neurology, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK;
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London WC1E 6BT, UK; (B.K.); (G.C.); (M.C.Y.); (F.P.); (A.T.T.); (C.A.M.G.W.-K.)
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, 8006 Zürich, Switzerland
| | - Baris Kanber
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London WC1E 6BT, UK; (B.K.); (G.C.); (M.C.Y.); (F.P.); (A.T.T.); (C.A.M.G.W.-K.)
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK;
| | - Carole H. Sudre
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK;
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Dementia Research Centre, Institute of Neurology, University College London, London WC1E 6BT, UK
| | - Gloria Castellazzi
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London WC1E 6BT, UK; (B.K.); (G.C.); (M.C.Y.); (F.P.); (A.T.T.); (C.A.M.G.W.-K.)
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Jiaying Zhang
- School of Artificial Intelligence, Beijing University of Post and Communications, Beijing 100876, China;
- Department of Computer Science and Centre for Medical Image Computing, University College London, London WC1E 6BT, UK
| | - Marios C. Yiannakas
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London WC1E 6BT, UK; (B.K.); (G.C.); (M.C.Y.); (F.P.); (A.T.T.); (C.A.M.G.W.-K.)
| | - Gwen Gonzales
- Department of Uro-Neurology, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK;
| | - Ferran Prados
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London WC1E 6BT, UK; (B.K.); (G.C.); (M.C.Y.); (F.P.); (A.T.T.); (C.A.M.G.W.-K.)
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK;
- e-Health Centre, Universitat Oberta de Catalunya, 08018 Barcelona, Spain
| | - Ahmed T. Toosy
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London WC1E 6BT, UK; (B.K.); (G.C.); (M.C.Y.); (F.P.); (A.T.T.); (C.A.M.G.W.-K.)
| | - Claudia A. M. Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London WC1E 6BT, UK; (B.K.); (G.C.); (M.C.Y.); (F.P.); (A.T.T.); (C.A.M.G.W.-K.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Digital Neuroscience Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Jalesh N. Panicker
- Department of Brain Repair and Rehabilitation, Faculty of Brain Sciences, Queen Square Institute of Neurology, University College London, London WC1E 6BT, UK; (M.D.L.); (J.N.P.)
- Department of Uro-Neurology, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK;
| |
Collapse
|
2
|
de Rijk MM, Peter S, Wolf-Johnston A, Heesakkers J, van Koeveringe GA, Birder LA. Quantification of Aging-Related Decreases in Sensory Innervation of the Bladder Trigone in Rats. Int Neurourol J 2024; 28:40-45. [PMID: 38461855 DOI: 10.5213/inj.2346220.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 03/12/2024] Open
Abstract
PURPOSE The prevalence of lower urinary tract symptoms (LUTS), characterized by problems regarding storage and/or voiding of urine, is known to significantly increase with age. Effective communication between the lower urinary tract and the central nervous system (CNS) is essential for the optimal function of this system, and heavily relies on the efficient interaction between the bladder urothelium and the afferent nerve fibers situated in close proximity to the urothelium within the lamina propria. METHODS We aimed to quantify aging-related differences in the expression of calcitonin gene-related peptide (CGRP, an established marker for sensory nerve fibers) in the trigonal mucosal layers of young (3-4 months) and aged (25-30 months) rats. We evaluated trigonal tissue from 3 animals per age group. Tissue was serially sectioned at 10 μm and stained for CGRP. Images were taken along the full length of the tissue. For each image we computed the total CGRP-positive area (μm2) and the median value for each animal was used for further analysis. RESULTS Upon statistical analysis the aged rats show a significantly lower CGRP-positive area compared to young rats (P=0.0049). These results indicate that aging has a negative effect on the area of CGRP-positive signal in the trigone. CONCLUSION The structural and functional integrity of the sensory web in the trigonum of rats is negatively affected by the aging process, potentially leading to impaired communication between the bladder urothelium the CNS. Consequently, these perturbations in the sensory system may contribute to the pathogenesis or exacerbation LUTS.
Collapse
Affiliation(s)
- Mathijs M de Rijk
- Department of Urology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Urology, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
| | - Saša Peter
- Department of Urology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Amanda Wolf-Johnston
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Heesakkers
- Department of Urology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Urology, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
| | - Gommert A van Koeveringe
- Department of Urology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Urology, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
| | - Lori A Birder
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Botter SM, Kessler TM. Neuro-Urology and Biobanking: An Integrated Approach for Advancing Research and Improving Patient Care. Int J Mol Sci 2023; 24:14281. [PMID: 37762582 PMCID: PMC10531693 DOI: 10.3390/ijms241814281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Understanding the molecular mechanisms underlying neuro-urological disorders is crucial for the development of targeted therapeutic interventions. Through the establishment of comprehensive biobanks, researchers can collect and store various biological specimens, including urine, blood, tissue, and DNA samples, to study these mechanisms. In the context of neuro-urology, biobanking facilitates the identification of genetic variations, epigenetic modifications, and gene expression patterns associated with neurogenic lower urinary tract dysfunction. These conditions often present as symptoms of neurological diseases such as Alzheimer's disease, multiple sclerosis, Parkinson's disease, spinal cord injury, and many others. Biobanking of tissue specimens from such patients is essential to understand why these diseases cause the respective symptoms and what can be done to alleviate them. The utilization of high-throughput technologies, such as next-generation sequencing and gene expression profiling, enables researchers to explore the molecular landscape of these conditions in an unprecedented manner. The development of specific and reliable biomarkers resulting from these efforts may help in early detection, accurate diagnosis, and effective monitoring of neuro-urological conditions, leading to improved patient care and management. Furthermore, these biomarkers could potentially facilitate the monitoring of novel therapies currently under investigation in neuro-urological clinical trials. This comprehensive review explores the synergistic integration of neuro-urology and biobanking, with particular emphasis on the translation of biobanking approaches in molecular research in neuro-urology. We discuss the advantages of biobanking in neuro-urological studies, the types of specimens collected and their applications in translational research. Furthermore, we highlight the importance of standardization and quality assurance when collecting samples and discuss challenges that may compromise sample quality and impose limitations on their subsequent utilization. Finally, we give recommendations for sampling in multicenter studies, examine sustainability issues associated with biobanking, and provide future directions for this dynamic field.
Collapse
Affiliation(s)
- Sander M. Botter
- Swiss Center for Musculoskeletal Biobanking, Balgrist Campus AG, 8008 Zürich, Switzerland
| | - Thomas M. Kessler
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, 8008 Zürich, Switzerland;
| |
Collapse
|