1
|
Korte J, Marsh LMM, Saalfeld S, Behme D, Aliseda A, Berg P. Fusiform versus Saccular Intracranial Aneurysms-Hemodynamic Evaluation of the Pre-Aneurysmal, Pathological, and Post-Interventional State. J Clin Med 2024; 13:551. [PMID: 38256685 PMCID: PMC11154261 DOI: 10.3390/jcm13020551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Minimally-invasive therapies are well-established treatment methods for saccular intracranial aneurysms (SIAs). Knowledge concerning fusiform IAs (FIAs) is low, due to their wide and alternating lumen and their infrequent occurrence. However, FIAs carry risks like ischemia and thus require further in-depth investigation. Six patient-specific IAs, comprising three position-identical FIAs and SIAs, with the FIAs showing a non-typical FIA shape, were compared, respectively. For each model, a healthy counterpart and a treated version with a flow diverting stent were created. Eighteen time-dependent simulations were performed to analyze morphological and hemodynamic parameters focusing on the treatment effect (TE). The stent expansion is higher for FIAs than SIAs. For FIAs, the reduction in vorticity is higher (Δ35-75% case 2/3) and the reduction in the oscillatory velocity index is lower (Δ15-68% case 2/3). Velocity is reduced equally for FIAs and SIAs with a TE of 37-60% in FIAs and of 41-72% in SIAs. Time-averaged wall shear stress (TAWSS) is less reduced within FIAs than SIAs (Δ30-105%). Within this study, the positive TE of FDS deployed in FIAs is shown and a similarity in parameters found due to the non-typical FIA shape. Despite the higher stent expansion, velocity and vorticity are equally reduced compared to identically located SIAs.
Collapse
Affiliation(s)
- Jana Korte
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, 39106 Magdeburg, Germany
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany; (L.M.M.M.); (S.S.); (D.B.); (P.B.)
| | - Laurel M. M. Marsh
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany; (L.M.M.M.); (S.S.); (D.B.); (P.B.)
- Department of Mechanical Engineering, George Mason University, Fairfax, VA 22030, USA
| | - Sylvia Saalfeld
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany; (L.M.M.M.); (S.S.); (D.B.); (P.B.)
- Department of Computer Science and Automation, Ilmenau University of Technology, 98693 Ilmenau, Germany
| | - Daniel Behme
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany; (L.M.M.M.); (S.S.); (D.B.); (P.B.)
- University Hospital Magdeburg, University of Magdeburg, 39106 Magdeburg, Germany
| | - Alberto Aliseda
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA;
| | - Philipp Berg
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany; (L.M.M.M.); (S.S.); (D.B.); (P.B.)
- Department of Medical Engineering, University of Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|