1
|
Subsomwong P, Kranrod C, Sakai Y, Asano K, Nakane A, Tokonami S. Impact of intermittent high-dose radon exposures on lung epithelial cells: proteomic analysis and biomarker identification. JOURNAL OF RADIATION RESEARCH 2025; 66:107-114. [PMID: 40088196 PMCID: PMC11932336 DOI: 10.1093/jrr/rraf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 03/17/2025]
Abstract
Lung cancer is the most prevalent cancer worldwide, and radon exposure is ranked as the second risk factor after cigarette smoking. It has been reported that radon induces deoxyribonucleic acid damage and oxidative stress in cells. However, the protein profile and potential biomarkers for early detection of radon-induced lung cancer remain unknown. In this study, we aimed to investigate the effects of intermittent high-dose radon exposure on lung epithelial cells, analyze protein profiles and identify potential biomarkers for diagnosis of radon-related lung cancer. Human lung epithelial cells (A549) were exposed to radon (1000 Bq/m3) for 30 min daily for 7 days. Cell viability was measured using the WST-1 assay, and liquid chromatography-mass spectrometry proteomic analysis was performed. Differentially expressed proteins and gene ontology (GO) enrichment were analyzed. Our findings showed that intermittent high-radon exposure reduced A549 cell viability over time. Proteomic analysis identified proteins associated with stressed-induced apoptosis, mitochondrial adaptation, nuclear integrity and lysosomal degradation. These proteins are related to catabolism, stress response, gene expression and metabolic processes in the biological process of GO analysis. We highlighted specific proteins, including AKR1B1, CDK2, DAPK1, PRDX1 and ALHD2 with potential as biomarkers for radon-related lung cancer. In summary, intermittent high-dose radon exposure affects cellular adaptions of lung epithelial cells including stress-induced apoptosis, mitochondrial dysfunctions and immune regulation. The identified proteins may serve as diagnostic biomarkers or therapeutic targets for radon-related lung cancer.
Collapse
Affiliation(s)
- Phawinee Subsomwong
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Chutima Kranrod
- Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Yuna Sakai
- Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Akio Nakane
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Shinji Tokonami
- Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
2
|
Rathebe PC, Kholopo M. Radiation Detection-CD/DVD, Glass, and Emerging Materials for Radon Exposure Assessment. SENSORS (BASEL, SWITZERLAND) 2024; 24:7674. [PMID: 39686210 DOI: 10.3390/s24237674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
This review aimed to explore advances in radon detection methods, emphasizing cost-effectiveness and accessible techniques such as CDs, DVDs, and glass-based detectors. In this review, we compared traditional methods like alpha track detectors and continuous radon monitors with emerging innovations that leverage polycarbonate material and IoT-integrated systems. Our evaluation of the synthesis suggests that CDs and DVDs provide scalable solutions for long-term radon monitoring, while glass-based detectors like CR-39 offer high sensitivity for epidemiological studies. The integration of IoT and AI technologies further enhances real-time radon monitoring, paving the way for precise, scalable, and affordable radon mitigation strategies. This work highlights the importance of low-cost, innovative approaches in reducing radon-related lung cancer risks and informs future research on optimizing the technologies for diverse environments.
Collapse
Affiliation(s)
- Phoka C Rathebe
- Department of Environmental Health, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa
| | - Mota Kholopo
- Department of Environmental Health, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa
| |
Collapse
|
3
|
Boroumand N, Baghdissar C, Elihn K, Lundholm L. Nicotine interacts with DNA lesions induced by alpha radiation which may contribute to erroneous repair in human lung epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117009. [PMID: 39244876 DOI: 10.1016/j.ecoenv.2024.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/16/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
PURPOSE Epidemiological studies show that radon and cigarette smoke interact in inducing lung cancer, but the contribution of nicotine in response to alpha radiation emitted by radon is not well understood. MATERIALS AND METHODS Bronchial epithelial BEAS-2B cells were either pre-treated with 2 µM nicotine during 16 h, exposed to radiation, or the combination. DNA damage, cellular and chromosomal alterations, oxidative stress as well as inflammatory responses were assessed to investigate the role of nicotine in modulating responses. RESULTS Less γH2AX foci were detected at 1 h after alpha radiation exposure (1-2 Gy) in the combination group versus alpha radiation alone, whereas nicotine alone had no effect. Comet assay showed less DNA breaks already just after combined exposure, supported by reduced p-ATM, p-DNA-PK, p-p53 and RAD51 at 1 h, compared to alpha radiation alone. Yet the frequency of translocations was higher in the combination group at 27 h after irradiation. Although nicotine did not alter G2 arrest at 24 h, it assisted in cell cycle progression at 48 h post radiation. A slightly faster recovery was indicated in the combination group based on cell viability kinetics and viable cell counts, and significantly using colony formation assay. Pan-histone acetyl transferase inhibition using PU139 blocked the reduction in p-p53 and γH2AX activation, suggesting a role for nicotine-induced histone acetylation in enabling rapid DNA repair. Nicotine had a modest effect on reactive oxygen species induction, but tended to increase alpha particle-induced pro-inflammatory IL-6 and IL-1β (4 Gy). Interestingly, nicotine did not alter gamma radiation-induced γH2AX foci. CONCLUSIONS This study provides evidence that nicotine modulates alpha-radiation response by causing a faster but more error-prone repair, as well as rapid recovery, which may allow expansion of cells with genomic instabilities. These results hold implications for estimating radiation risk among nicotine users.
Collapse
Affiliation(s)
- Nadia Boroumand
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Carol Baghdissar
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, Sweden
| | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden.
| |
Collapse
|
4
|
Li P, Sun Q, Geng J, Shi Q, Hu J, Tang S. A study on the differences in radon exhalation of different lithologies at various depths and the factors influencing its distribution in northern Shaanxi, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157935. [PMID: 35948128 DOI: 10.1016/j.scitotenv.2022.157935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The inhalation of a high concentration of radon gas increases the risk of cancer. Therefore, it is of utmost necessity to pay due attention to the problem of environmental radon pollution. The high radioactivity above the coal slab causes serious radon radiation contamination on the mining grounds in coal mining areas such as the northern part of China and the western part of the United States. At present, there is a lack of research on radon exhalation in different lithologies. In this study, the differences in the radon exhalation of different lithologies at various depths and their controlling factors were studied by NMR and radon measurement. The results highlighted that the radon exhalation rates in different rocks varied from 0.3 to 0.6 Bq/m2·s. The average radon exhalation rate of the soil was 0.7 Bq/m2·s, and the radon exhalation rates of different lithologies followed the pattern red clay > loess > sandstone > mudstone > coal. The radon exhalation rate increased initially, followed by a decrease, and the radon exhalation rate was the highest at the boundary between the soil and rock layers. The radon exhalation rates of different lithologies have a strong correlation with the small pores (<0.1 μm), which govern the changes in the porous structure with depth. The results of this study are important from the perspective evaluation of environmental radon pollution.
Collapse
Affiliation(s)
- Pengfei Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| | - Qiang Sun
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, 710054, China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, China.
| | - Jishi Geng
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| | - Qingmin Shi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, 710054, China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, China.
| | - Jianjun Hu
- Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Shengli Tang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China
| |
Collapse
|
5
|
Abbasi A, Tulucu F, Issa SAM, Algethami M, Mirekhtiary F, Zakaly HMH. Modelling and calculation of risk due to radon concentration in residential houses, Nicosia, Cyprus. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Pylak M, Fornalski KW, Reszczyńska J, Kukulski P, Waligórski MPR, Dobrzyński L. Analysis of Indoor Radon Data Using Bayesian, Random Binning, and Maximum Entropy Methods. Dose Response 2021; 19:15593258211009337. [PMID: 34035781 PMCID: PMC8132103 DOI: 10.1177/15593258211009337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 11/17/2022] Open
Abstract
Three statistical methods: Bayesian, randomized data binning and Maximum Entropy Method (MEM) are described and applied in the analysis of US radon data taken from the US registry. Two confounding factors-elevation of inhabited dwellings, and UVB (ultra-violet B) radiation exposure-were considered to be most correlated with the frequency of lung cancer occurrence. MEM was found to be particularly useful in extracting meaningful results from epidemiology data containing such confounding factors. In model testing, MEM proved to be more effective than the least-squares method (even via Bayesian analysis) or multi-parameter analysis, routinely applied in epidemiology. Our analysis of the available residential radon epidemiology data consistently demonstrates that the relative number of lung cancers decreases with increasing radon concentrations up to about 200 Bq/m3, also decreasing with increasing altitude at which inhabitants live. Correlation between UVB intensity and lung cancer has also been demonstrated.
Collapse
Affiliation(s)
- Maciej Pylak
- National Centre for Nuclear Research (NCBJ), Otwock-Świerk, Poland.,Institute of Physics, Polish Academy of Sciences (IF PAN), Warszawa, Poland
| | | | - Joanna Reszczyńska
- National Centre for Nuclear Research (NCBJ), Otwock-Świerk, Poland.,Department of Biophysics and Human Physiology, Medical University of Warsaw (WUM), Warszawa, Poland
| | - Piotr Kukulski
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Michael P R Waligórski
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Kraków, Poland
| | | |
Collapse
|
7
|
Nilsson R, Liu NA. Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part II: Relation between ROS-induced DNA damages and human cancer. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|