1
|
Elmahdy MS, Jagt T, Zinkstok RT, Qiao Y, Shahzad R, Sokooti H, Yousefi S, Incrocci L, Marijnen CAM, Hoogeman M, Staring M. Robust contour propagation using deep learning and image registration for online adaptive proton therapy of prostate cancer. Med Phys 2019; 46:3329-3343. [PMID: 31111962 PMCID: PMC6852565 DOI: 10.1002/mp.13620] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 11/09/2022] Open
Abstract
Purpose To develop and validate a robust and accurate registration pipeline for automatic contour propagation for online adaptive Intensity‐Modulated Proton Therapy (IMPT) of prostate cancer using elastix software and deep learning. Methods A three‐dimensional (3D) Convolutional Neural Network was trained for automatic bladder segmentation of the computed tomography (CT) scans. The automatic bladder segmentation alongside the computed tomography (CT) scan is jointly optimized to add explicit knowledge about the underlying anatomy to the registration algorithm. We included three datasets from different institutes and CT manufacturers. The first was used for training and testing the ConvNet, where the second and the third were used for evaluation of the proposed pipeline. The system performance was quantified geometrically using the dice similarity coefficient (DSC), the mean surface distance (MSD), and the 95% Hausdorff distance (HD). The propagated contours were validated clinically through generating the associated IMPT plans and compare it with the IMPT plans based on the manual delineations. Propagated contours were considered clinically acceptable if their treatment plans met the dosimetric coverage constraints on the manual contours. Results The bladder segmentation network achieved a DSC of 88% and 82% on the test datasets. The proposed registration pipeline achieved a MSD of 1.29 ± 0.39, 1.48 ± 1.16, and 1.49 ± 0.44 mm for the prostate, seminal vesicles, and lymph nodes, respectively, on the second dataset and a MSD of 2.31 ± 1.92 and 1.76 ± 1.39 mm for the prostate and seminal vesicles on the third dataset. The automatically propagated contours met the dose coverage constraints in 86%, 91%, and 99% of the cases for the prostate, seminal vesicles, and lymph nodes, respectively. A Conservative Success Rate (CSR) of 80% was obtained, compared to 65% when only using intensity‐based registration. Conclusion The proposed registration pipeline obtained highly promising results for generating treatment plans adapted to the daily anatomy. With 80% of the automatically generated treatment plans directly usable without manual correction, a substantial improvement in system robustness was reached compared to a previous approach. The proposed method therefore facilitates more precise proton therapy of prostate cancer, potentially leading to fewer treatment‐related adverse side effects.
Collapse
Affiliation(s)
- Mohamed S Elmahdy
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, 2300, RC Leiden, The Netherlands
| | - Thyrza Jagt
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Roel Th Zinkstok
- Department of Radiation Oncology, Leiden University Medical Center, 2300, RC Leiden, The Netherlands
| | - Yuchuan Qiao
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, 2300, RC Leiden, The Netherlands
| | - Rahil Shahzad
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, 2300, RC Leiden, The Netherlands
| | - Hessam Sokooti
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, 2300, RC Leiden, The Netherlands
| | - Sahar Yousefi
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, 2300, RC Leiden, The Netherlands
| | - Luca Incrocci
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - C A M Marijnen
- Department of Radiation Oncology, Leiden University Medical Center, 2300, RC Leiden, The Netherlands
| | | | - Marius Staring
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, 2300, RC Leiden, The Netherlands.,Department of Radiation Oncology, Leiden University Medical Center, 2300, RC Leiden, The Netherlands.,Intelligent Systems Department, Delft University of Technology, 2600, GA Delft, The Netherlands
| |
Collapse
|
2
|
Landry G, Hua CH. Current state and future applications of radiological image guidance for particle therapy. Med Phys 2018; 45:e1086-e1095. [PMID: 30421805 DOI: 10.1002/mp.12744] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/25/2017] [Accepted: 11/30/2017] [Indexed: 12/27/2022] Open
Abstract
In this review paper, we first give a short overview of radiological image guidance in photon radiotherapy, placing emphasis on the fact that linac based radiotherapy has outpaced particle therapy in the adoption of volumetric image guidance. While cone beam computed tomography (CBCT) has been an established technique in linac treatment rooms for almost two decades, the widespread adoption of volumetric image guidance in particle therapy, whether by means of CBCT or in-room CT imaging, is recent. This lag may be attributable to the bespoke nature and lower number of particle therapy installations, as well as the differences in geometry between those installations and linac treatment rooms. In addition, for particle therapy the so called shift invariance of the dose distribution rarely applies. An overview of the different volumetric image guidance solutions found at modern particle therapy facilities is provided, covering gantry, nozzle, C-arm, and couch-mounted CBCT as well different in-room CT configurations. A summary of the use of in-room volumetric imaging data beyond anatomy-based positioning is also presented as well as the necessary corrections to CBCT images for accurate water equivalent thickness calculation. Finally, the use of non-ionizing imaging modalities is discussed.
Collapse
Affiliation(s)
- Guillaume Landry
- Faculty of Physics, Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), 85748, Garching b. München, Germany
| | - Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| |
Collapse
|
3
|
Zou W, Dong L, Kevin Teo BK. Current State of Image Guidance in Radiation Oncology: Implications for PTV Margin Expansion and Adaptive Therapy. Semin Radiat Oncol 2018; 28:238-247. [PMID: 29933883 DOI: 10.1016/j.semradonc.2018.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Image guidance technology has evolved and seen widespread application in the past several decades. Advancements in the diagnostic imaging field have found new applications in radiation oncology and promoted the development of therapeutic devices with advanced imaging capabilities. A recent example is the development of linear accelerators that offer magnetic resonance imaging for real-time imaging and online adaptive planning. Volumetric imaging, in particular, offers more precise localization of soft tissue targets and critical organs which reduces setup uncertainty and permit the use of smaller setup margins. We present a review of the status of current imaging modalities available for radiation oncology and its impact on target margins and use for adaptive therapy.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA.
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Boon-Keng Kevin Teo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
4
|
Tas B. Advanced Radiation Treatment Planning of Prostate Cancer. Prostate Cancer 2018. [DOI: 10.5772/intechopen.76184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
5
|
The dosimetric impact of manual adjustments following automated registration in prostate image-guided radiotherapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2018. [DOI: 10.1017/s1460396917000516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractAimAlthough manual adjustment of automatic cone beam computed tomography (CBCT) matching may improve the target coverage in certain points of interest, concerns exist that this may lead to dosimetric uncertainties which would negate the theoretical benefit of this approach. The objective of this study is to evaluate the dosimetric impact of manual adjustments made after automatic bony registration on CBCT in prostate patients.MethodsA total of 50 CBCT datasets of ten high-risk prostate cancer patients were randomly chosen. Each CBCT dataset was registered three times. Method (A): Automatic registration, Method (M1): Manual adjustment carried out by two experienced radiation therapists, Method (M2): Manual adjustment carried out by different radiation therapists with varying levels of experience. The clinical target volume (CTV), planning target volume (PTV), the bladder and the rectum were subsequently contoured on each CBCT dataset by a radiation oncologist blinded to the registration methods. The absolute difference of various dosimetric parameters were then analysed and compared with the original planning doses. A comparison of the three matching methods employed was also carried out.ResultsThere was a statistically significant difference in the magnitude of move taken in the inferior superior direction between M1 and M2 method. There were no significant differences observed in any of the dosimetric parameters examined in relation to the rectum, bladder or CTV. The only significant difference observed was the volume of PTV covered by the prescription isodose (95%) which was statistically significant lower in method A compared with both M1 and M2. There was no difference observed between M1 and M2 methods. The mean duration of the automated registration and subsequent analysis was 64 seconds compared with 91 seconds for automated registrations which included the additional manual adjustment.FindingsCBCT-based manual adjustments of automated bony-based registrations during the image-guided radiotherapy verification of prostate cancer patients can improve PTV coverage without impacting negatively on the doses received by the organs at risk. This strategy is associated with a small increase in overall treatment time.
Collapse
|
6
|
Transperineal gold marker implantation for image-guided external beam radiotherapy of prostate cancer. Strahlenther Onkol 2017; 193:452-458. [DOI: 10.1007/s00066-017-1104-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/16/2017] [Indexed: 12/28/2022]
|
7
|
Jomehzadeh A, Shokrani P, Mohammadi M, Amouheidari A. Assessment of a 2D electronic portal imaging devices-based dosimetry algorithm for pretreatment and in-vivo midplane dose verification. Adv Biomed Res 2016; 5:171. [PMID: 28028511 PMCID: PMC5157032 DOI: 10.4103/2277-9175.194799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/12/2014] [Indexed: 11/22/2022] Open
Abstract
Background: The use of electronic portal imaging devices (EPIDs) is a method for the dosimetric verification of radiotherapy plans, both pretreatment and in vivo. The aim of this study is to test a 2D EPID-based dosimetry algorithm for dose verification of some plans inside a homogenous and anthropomorphic phantom and in vivo as well. Materials and Methods: Dose distributions were reconstructed from EPID images using a 2D EPID dosimetry algorithm inside a homogenous slab phantom for a simple 10 × 10 cm2 box technique, 3D conformal (prostate, head-and-neck, and lung), and intensity-modulated radiation therapy (IMRT) prostate plans inside an anthropomorphic (Alderson) phantom and in the patients (one fraction in vivo) for 3D conformal plans (prostate, head-and-neck and lung). Results: The planned and EPID dose difference at the isocenter, on an average, was 1.7% for pretreatment verification and less than 3% for all in vivo plans, except for head-and-neck, which was 3.6%. The mean γ values for a seven-field prostate IMRT plan delivered to the Alderson phantom varied from 0.28 to 0.65. For 3D conformal plans applied for the Alderson phantom, all γ1% values were within the tolerance level for all plans and in both anteroposterior and posteroanterior (AP-PA) beams. Conclusion: The 2D EPID-based dosimetry algorithm provides an accurate method to verify the dose of a simple 10 × 10 cm2 field, in two dimensions, inside a homogenous slab phantom and an IMRT prostate plan, as well as in 3D conformal plans (prostate, head-and-neck, and lung plans) applied using an anthropomorphic phantom and in vivo. However, further investigation to improve the 2D EPID dosimetry algorithm for a head-and-neck case, is necessary.
Collapse
Affiliation(s)
- Ali Jomehzadeh
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Medical Physics, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Medical Physics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parvaneh Shokrani
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Alireza Amouheidari
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
8
|
McPartlin AJ, Li XA, Kershaw LE, Heide U, Kerkmeijer L, Lawton C, Mahmood U, Pos F, van As N, van Herk M, Vesprini D, van der Voort van Zyp J, Tree A, Choudhury A. MRI-guided prostate adaptive radiotherapy - A systematic review. Radiother Oncol 2016; 119:371-80. [PMID: 27162159 DOI: 10.1016/j.radonc.2016.04.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 11/29/2022]
Abstract
Dose escalated radiotherapy improves outcomes for men with prostate cancer. A plateau for benefit from dose escalation using EBRT may not have been reached for some patients with higher risk disease. The use of increasingly conformal techniques, such as step and shoot IMRT or more recently VMAT, has allowed treatment intensification to be achieved whilst minimising associated increases in toxicity to surrounding normal structures. To support further safe dose escalation, the uncertainties in the treatment target position will need be minimised using optimal planning and image-guided radiotherapy (IGRT). In particular the increasing usage of profoundly hypo-fractionated stereotactic therapy is predicated on the ability to confidently direct treatment precisely to the intended target for the duration of each treatment. This article reviews published studies on the influences of varies types of motion on daily prostate position and how these may be mitigated to improve IGRT in future. In particular the role that MRI has played in the generation of data is discussed and the potential role of the MR-Linac in next-generation IGRT is discussed.
Collapse
Affiliation(s)
- A J McPartlin
- The Christie NHS Foundation Trust and Manchester Cancer Research Centre, University of Manchester, Manchester Academic Health Sciences Centre, UK
| | - X A Li
- Medical College of Wisconsin, USA
| | - L E Kershaw
- The Christie NHS Foundation Trust and Manchester Cancer Research Centre, University of Manchester, Manchester Academic Health Sciences Centre, UK
| | - U Heide
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, The Netherlands
| | - L Kerkmeijer
- University Medical Center Utrecht, The Netherlands
| | - C Lawton
- Medical College of Wisconsin, USA
| | - U Mahmood
- MD Anderson Cancer Center, Houston, USA
| | - F Pos
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, The Netherlands
| | - N van As
- Royal Marsden Hospital, UK; Institute of Cancer Research, UK
| | - M van Herk
- The Christie NHS Foundation Trust and Manchester Cancer Research Centre, University of Manchester, Manchester Academic Health Sciences Centre, UK
| | - D Vesprini
- Sunnybrook Health Sciences Centre, University of Toronto, Canada
| | | | - A Tree
- Royal Marsden Hospital, UK
| | - A Choudhury
- The Christie NHS Foundation Trust and Manchester Cancer Research Centre, University of Manchester, Manchester Academic Health Sciences Centre, UK.
| | | |
Collapse
|
9
|
The stability of seeds in external beam prostate radiotherapy and implications of migration in current practice: a systematic review. JOURNAL OF RADIOTHERAPY IN PRACTICE 2015. [DOI: 10.1017/s1460396914000399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractPurposeTo determine and summarise the literature on prostatic seed stability by investigating seed marker migration and loss in prostate cancer patients. In addition, documenting the implications of significant seed migration and loss in clinical practise.MethodsPubMed and Sciencedirect databases were used to locate papers on the stability of gold seed markers in prostate patients treated with external beam radiation therapy. The search found 3,238 articles and ten articles were selected and reviewed based on inclusion and exclusion criteria for the scope of this literature review.ResultsMinimal migration and loss of seeds was observed in the literature reviewed, with the majority of authors reporting <2·0 mm migration within the prostate; however, there were individual cases reported outside of the 2·0 mm threshold. It was also found that significant migration had an impact on image matching, as well as, planning treatment volume margins.ConclusionSeed stability within the prostate has been proven, with most authors reporting minimal migration within a 2·0 mm threshold and minimal loss of seeds. Although individual cases can have significant migration and loss, if marker migration exceeds the 2·0 mm threshold, a protocol is required to deal with both non-significant and significant migration.
Collapse
|
10
|
Postprostatectomy ultrasound-guided transrectal implantation of gold markers for external beam radiotherapy. Technique and complications rate. Strahlenther Onkol 2013; 189:476-81. [PMID: 23604186 DOI: 10.1007/s00066-013-0323-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/23/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND PURPOSE Postprostatectomy radiotherapy (RT) improves survival in adjuvant and salvage settings. The implantation technique and complications rate of gold markers in the prostate bed for high-precision RT were analyzed. PATIENTS AND METHODS Patients undergoing postprostatectomy RT for prostate-specific antigen (PSA) relapse or high-risk disease were enrolled in the study. Under transrectal ultrasound guidance, three fine gold markers were implanted in the prostate bed and the technical difficulties of insertion were documented. Patients received our self-designed questionnaires concerning complications and pain. The influence of anticoagulants and coumarins on bleeding was analyzed, as was the effect of potential risk factors on pain. RESULTS In 77 consecutive patients, failure of marker implantation or marker migration was seen in six cases. Rectal bleeding was reported by 10 patients and 1 had voiding complaints. No macroscopic hematuria persisting for more than 3 days was observed. Other complications included rectal discomfort (n = 2), nausea (n = 1), abdominal discomfort (n = 1), and pain requiring analgesics (n = 4). No major complications were reported. On a 0-10 visual analogue scale (VAS), the mean pain score was 3.7. No clinically significant risk factors for complications were identified. CONCLUSION Transrectal implantation of gold markers in the prostate bed is feasible and safe. Alternatives like cone beam computed tomography (CBCT) should be considered, but the advantages of gold marker implantation for high-precision postprostatectomy RT would seem to outweigh the minor risks involved.
Collapse
|
11
|
Liu H, Wu Q. Evaluations of an adaptive planning technique incorporating dose feedback in image-guided radiotherapy of prostate cancer. Med Phys 2012; 38:6362-70. [PMID: 22149819 DOI: 10.1118/1.3658567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Online image guidance (IG) has been used to effectively correct the setup error and inter-fraction rigid organ motion for prostate cancer. However, planning margins are still necessary to account for uncertainties such as deformation and intra-fraction motion. The purpose of this study is to investigate the effectiveness of an adaptive planning technique incorporating offline dose feedback to manage inter-fraction motion and residuals from online correction. METHODS Repeated helical CT scans from 28 patients were included in the study. The contours of prostate and organs-at-risk (OARs) were delineated on each CT, and online IG was simulated by matching center-of-mass of prostate between treatment CTs and planning CT. A seven beam intensity modulated radiation therapy (IMRT) plan was designed for each patient on planning CT for a total of 15 fractions. Dose distribution at each fraction was evaluated based on actual contours of the target and OARs from that fraction. Cumulative dose up to each fraction was calculated by tracking each voxel based on a deformable registration algorithm. The cumulative dose was compared with the dose from initial plan. If the deviation exceeded the pre-defined threshold, such as 2% of the D₉₉ to the prostate, an adaptive planning technique called dose compensation was invoked, in which the cumulative dose distribution was fed back to the treatment planning system and the dose deficit was made up through boost radiation in future treatment fractions. The dose compensation was achieved by IMRT inverse planning. Two weekly compensation delivery strategies were simulated: one intended to deliver the boost dose in all future fractions (schedule A) and the other in the following week only (schedule B). The D₉₉ to prostate and generalized equivalent uniform dose (gEUD) to rectal wall and bladder were computed and compared with those without the dose compensation. RESULTS If only 2% underdose is allowed at the end of the treatment course, then 11 patients fail. If the same criteria is assessed at the end of each week (every five fractions), then 14 patients fail, with three patients failing the 1st or 2nd week but passing at the end. The average dose deficit from these 14 patients was 4.4%. They improved to 2% after the weekly compensation. Out of these 14 patients who needed dose compensation, ten passed the dose criterion after weekly dose compensation, three patients failed marginally, and one patient still failed the criterion significantly (10% deficit), representing 3.6% of the patient population. A more aggressive compensation frequency (every three fractions) could successfully reduce the dose deficit to the acceptable level for this patient. The average number of required dose compensation re-planning per patient was 0.82 (0.79) per patient for schedule A (B) delivery strategy. The doses to OARs were not significantly different from the online IG only plans without dose compensation. CONCLUSIONS We have demonstrated the effectiveness of offline dose compensation technique in image-guided radiotherapy for prostate cancer. It can effectively account for residual uncertainties which cannot be corrected through online IG. Dose compensation allows further margin reduction and critical organs sparing.
Collapse
Affiliation(s)
- Han Liu
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
12
|
Gold marker displacement due to needle insertion during HDR-brachytherapy for treatment of prostate cancer: a prospective cone beam computed tomography and kilovoltage on-board imaging (kV-OBI) study. Radiat Oncol 2012; 7:24. [PMID: 22348595 PMCID: PMC3307434 DOI: 10.1186/1748-717x-7-24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/20/2012] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate gold marker displacement due to needle insertion during HDR-brachytherapy for therapy of prostate cancer. PATIENTS AND METHODS 18 patients entered into this prospective evaluation. Three gold markers were implanted into the prostate during the first HDR-brachytherapy procedure after the irradiation was administered. Three days after marker implantation all patients had a CT-scan for planning purpose of the percutaneous irradiation. Marker localization was defined on the digitally-reconstructed-radiographs (DRR) for daily (VMAT technique) or weekly (IMRT) set-up error correction. Percutaneous therapy started one week after first HDR-brachytherapy. After the second HDR-brachytherapy, two weeks after first HDR-brachtherapy, a cone-beam CT-scan was done to evaluate marker displacement due to needle insertion. In case of marker displacement, the actual positions of the gold markers were adjusted on the DRR. RESULTS The value of the gold marker displacement due to the second HDR-brachytherapy was analyzed in all patients and for each gold marker by comparison of the marker positions in the prostate after soft tissue registration of the prostate of the CT-scans prior the first and second HDR-brachytherapy. The maximum deviation was 5 mm, 7 mm and 12 mm for the anterior-posterior, lateral and superior-inferior direction. At least one marker in each patient showed a significant displacement and therefore new marker positions were adjusted on the DRRs for the ongoing percutaneous therapy. CONCLUSIONS Needle insertion in the prostate due to HDR-brachytherapy can lead to gold marker displacements. Therefore, it is necessary to verify the actual position of markers after the second HDR-brachytherapy. In case of significant deviations, a new DRR with the adjusted marker positions should be generated for precise positioning during the ongoing percutaneous irradiation.
Collapse
|
13
|
A comparison of imaging schedules for prostate radiotherapy including online tracking techniques. JOURNAL OF RADIOTHERAPY IN PRACTICE 2011. [DOI: 10.1017/s146039691000052x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractBackground and purpose: Repeat imaging protocols, specifying imaging frequency and action levels for movement correction, can be used to achieve more accurate targeting of the prostate gland during radiotherapy. We have carried out a study comparing the accuracies of online versus off-line correction strategies which use implanted marker seeds to localize the prostate.Material and methods: Data have been analysed for 60 prostate patients, verified using an online imaging technique. Systematic and random errors have been calculated for a daily imaging protocol and for other common imaging schedules. Resource requirements have been assessed for the daily imaging technique by analysing the in-room timings performed on 10 patients.Results: Daily imaging is beneficial for the majority of patients, an online imaging schedule with a 2 mm action level significantly reducing systematic and random errors. The online imaging can be performed with a 2-minute increase in the standard treatment slot.Conclusions: Online imaging tracking techniques can facilitate margin reduction, which may help to reduce rectal toxicities. The impact on departmental time and resource requirements is modest for the online daily tracking technique with marker seeds and kilovoltage planar imaging.
Collapse
|
14
|
Brown S, Lehman M, Ferrari-Anderson J, Glyde A, Burmeister E, Nicol D. Assessment of prostatic fiducial marker introduction: Patient morbidity, staff satisfaction and improved treatment field placement. J Med Imaging Radiat Oncol 2011; 55:417-24. [DOI: 10.1111/j.1754-9485.2011.02278.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Zhang M, Westerly DC, Mackie TR. Introducing an on-line adaptive procedure for prostate image guided intensity modulate proton therapy. Phys Med Biol 2011; 56:4947-65. [PMID: 21772078 DOI: 10.1088/0031-9155/56/15/019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With on-line image guidance (IG), prostate shifts relative to the bony anatomy can be corrected by realigning the patient with respect to the treatment fields. In image guided intensity modulated proton therapy (IG-IMPT), because the proton range is more sensitive to the material it travels through, the realignment may introduce large dose variations. This effect is studied in this work and an on-line adaptive procedure is proposed to restore the planned dose to the target. A 2D anthropomorphic phantom was constructed from a real prostate patient's CT image. Two-field laterally opposing spot 3D-modulation and 24-field full arc distal edge tracking (DET) plans were generated with a prescription of 70 Gy to the planning target volume. For the simulated delivery, we considered two types of procedures: the non-adaptive procedure and the on-line adaptive procedure. In the non-adaptive procedure, only patient realignment to match the prostate location in the planning CT was performed. In the on-line adaptive procedure, on top of the patient realignment, the kinetic energy for each individual proton pencil beam was re-determined from the on-line CT image acquired after the realignment and subsequently used for delivery. Dose distributions were re-calculated for individual fractions for different plans and different delivery procedures. The results show, without adaptive, that both the 3D-modulation and the DET plans experienced delivered dose degradation by having large cold or hot spots in the prostate. The DET plan had worse dose degradation than the 3D-modulation plan. The adaptive procedure effectively restored the planned dose distribution in the DET plan, with delivered prostate D(98%), D(50%) and D(2%) values less than 1% from the prescription. In the 3D-modulation plan, in certain cases the adaptive procedure was not effective to reduce the delivered dose degradation and yield similar results as the non-adaptive procedure. In conclusion, based on this 2D phantom study, by updating the proton pencil beam energy from the on-line image after realignment, this on-line adaptive procedure is necessary and effective for the DET-based IG-IMPT. Without dose re-calculation and re-optimization, it could be easily incorporated into the clinical workflow.
Collapse
Affiliation(s)
- M Zhang
- Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA.
| | | | | |
Collapse
|
16
|
Position Verification for the Prostate: Effect on Rectal Wall Dose. Int J Radiat Oncol Biol Phys 2011; 80:462-8. [DOI: 10.1016/j.ijrobp.2010.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 11/30/2022]
|
17
|
Johnston ML, Vial P, Wiltshire KL, Bell LJ, Blome S, Kerestes Z, Morgan GW, O'Driscoll D, Shakespeare TP, Eade TN. Daily online bony correction is required for prostate patients without fiducial markers or soft-tissue imaging. Clin Oncol (R Coll Radiol) 2011; 23:454-9. [PMID: 21470835 DOI: 10.1016/j.clon.2011.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 11/25/2022]
Abstract
AIM To compare online position verification strategies with offline correction protocols for patients undergoing definitive prostate radiotherapy. MATERIALS AND METHODS We analysed 50 patients with implanted fiducial markers undergoing curative prostate radiation treatment, all of whom underwent daily kilovoltage imaging using an on-board imager. For each treatment, patients were set-up initially with skin tattoos and in-room lasers. Orthogonal on-board imager images were acquired and the couch shift to match both bony anatomy and the fiducial markers recorded. The set-up error using skin tattoos and offline bone correction was compared with online bone correction. The fiducial markers were used as the reference. RESULTS Data from 1923 fractions were analysed. The systematic error was ≤1 mm for all protocols. The average random error was 2-3mm for online bony correction and 3-5mm for skin tattoos or offline-bone. Online-bone showed a significant improvement compared with offline-bone in the number of patients with >5mm set-up errors for >10% (P<0.001) and >20% (P<0.003) of their fractions. CONCLUSIONS Online correction to bony anatomy reduces both systematic and random set-up error in patients undergoing prostate radiotherapy, and is superior to offline correction methods for those patients not suitable for fiducial markers or daily soft-tissue imaging.
Collapse
Affiliation(s)
- M L Johnston
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Budiharto T, Slagmolen P, Haustermans K, Maes F, Junius S, Verstraete J, Oyen R, Hermans J, Van den Heuvel F. Intrafractional prostate motion during online image guided intensity-modulated radiotherapy for prostate cancer. Radiother Oncol 2011; 98:181-6. [PMID: 21295871 DOI: 10.1016/j.radonc.2010.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 12/09/2010] [Accepted: 12/25/2010] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Intrafractional motion consists of two components: (1) the movement between the on-line repositioning procedure and the treatment start and (2) the movement during the treatment delivery. The goal of this study is to estimate this intrafractional movement of the prostate during prostate cancer radiotherapy. MATERIAL AND METHODS Twenty-seven patients with prostate cancer and implanted fiducials underwent a marker match procedure before a five-field IMRT treatment. For all fields, in-treatment images were obtained and then processed to enable automatic marker detection. Combining the subsequent projection images, five positions of each marker were determined using the shortest path approach. The residual set-up error (RSE) after kV-MV based prostate localization, the prostate position as a function of time during a radiotherapy session and the required margins to account for intrafractional motion were determined. RESULTS The mean RSE and standard deviation in the antero-posterior, cranio-caudal and left-right direction were 2.3±1.5 mm, 0.2±1.1 mm and -0.1±1.1 mm, respectively. Almost all motions occurred in the posterior direction before the first treatment beam as the percentage of excursions>5 mm was reduced significantly when the RSE was not accounted for. The required margins for intrafractional motion increased with prolongation of the treatment. Application of a repositioning protocol after every beam could decrease the 1cm margin from CTV to PTV by 2 mm. CONCLUSIONS The RSE is the main contributor to intrafractional motion. This RSE after on-line prostate localization and patient repositioning in the posterior direction emphasizes the need to speed up the marker match procedure. Also, a prostate IMRT treatment should be administered as fast as possible, to ensure that the pre-treatment repositioning efforts are not erased by intrafractional prostate motion. This warrants an optimized workflow with the use of faster treatment techniques.
Collapse
Affiliation(s)
- Tom Budiharto
- Department of Radiation Oncology, Leuven Cancer Institute, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: multi-observer and image multi-modality study. Radiother Oncol 2010; 98:154-61. [PMID: 21176984 DOI: 10.1016/j.radonc.2010.11.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 11/28/2010] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND PURPOSE In-room cone-beam CT (CBCT) imaging and adaptive treatment strategies are promising methods to decrease target volumes and to spare organs at risk. The aim of this work was to analyze the inter-observer contouring uncertainties of target volumes and organs at risks (oars) in localized prostate cancer radiotherapy using CBCT images. Furthermore, CBCT contouring was benchmarked against other image modalities (CT, MR) and the influence of subjective image quality perception on inter-observer variability was assessed. METHODS AND MATERIALS Eight prostate cancer patients were selected. Seven radiation oncologists contoured target volumes and oars on CT, MRI and CBCT. Volumes, coefficient of variation (COV), conformity index (cigen), and coordinates of center-of-mass (COM) were calculated for each patient and image modality. Reliability analysis was performed for the support of the reported findings. Subjective perception of image quality was assessed via a ten-scored visual analog scale (VAS). RESULTS The median volume for prostate was larger on CT compared to MRI and CBCT images. The inter-observer variation for prostate was larger on CBCT (CIgen=0.57±0.09, 0.61 reliability) compared to CT (CIgen=0.72±0.07, 0.83 reliability) and MRI (CIgen=0.66±0.12, 0.87 reliability). On all image modalities values of the intra-observer reliability coefficient (0.97 for CT, 0.99 for MR and 0.94 for CBCT) indicated high reproducibility of results. For all patients the root mean square (RMS) of the inter-observer standard deviation (σ) of the COM was largest on CBCT with σ(x)=0.4 mm, σ(y)=1.1 mm, and σ(z)=1.7 mm. The concordance in delineating OARs was much stronger than for target volumes, with average CIgen>0.70 for rectum and CIgen>0.80 for bladder. Positive correlations between CIgen and VAS score of the image quality were observed for the prostate, seminal vesicles and rectum. CONCLUSIONS Inter-observer variability for target volume delineation in prostate cancer is larger for CBCT-based contouring compared to CT and MRI. This factor of influence needs to be considered when defining safety margins for CBCT-based Adaptive Radiotherapy (ART).
Collapse
|
20
|
Su Z, Zhang L, Murphy M, Williamson J. Analysis of prostate patient setup and tracking data: potential intervention strategies. Int J Radiat Oncol Biol Phys 2010; 81:880-7. [PMID: 20934274 DOI: 10.1016/j.ijrobp.2010.07.1978] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 07/22/2010] [Accepted: 07/22/2010] [Indexed: 12/25/2022]
Abstract
PURPOSE To evaluate the setup, interfraction, and intrafraction organ motion error distributions and simulate intrafraction intervention strategies for prostate radiotherapy. METHODS AND MATERIALS A total of 17 patients underwent treatment setup and were monitored using the Calypso system during radiotherapy. On average, the prostate tracking measurements were performed for 8 min/fraction for 28 fractions for each patient. For both patient couch shift data and intrafraction organ motion data, the systematic and random errors were obtained from the patient population. The planning target volume margins were calculated using the van Herk formula. Two intervention strategies were simulated using the tracking data: the deviation threshold and period. The related planning target volume margins, time costs, and prostate position "fluctuation" were presented. RESULTS The required treatment margin for the left-right, superoinferior, and anteroposterior axes was 8.4, 10.8, and 14.7 mm for skin mark-only setup and 1.3, 2.3, and 2.8 mm using the on-line setup correction, respectively. Prostate motion significantly correlated among the superoinferior and anteroposterior directions. Of the 17 patients, 14 had prostate motion within 5 mm of the initial setup position for ≥91.6% of the total tracking time. The treatment margin decreased to 1.1, 1.8, and 2.3 mm with a 3-mm threshold correction and to 0.5, 1.0, and 1.5 mm with an every-2-min correction in the left-right, superoinferior, and anteroposterior directions, respectively. The periodic corrections significantly increase the treatment time and increased the number of instances when the setup correction was made during transient excursions. CONCLUSIONS The residual systematic and random error due to intrafraction prostate motion is small after on-line setup correction. Threshold-based and time-based intervention strategies both reduced the planning target volume margins. The time-based strategies increased the treatment time and the in-fraction position fluctuation.
Collapse
Affiliation(s)
- Zhong Su
- Department of Radiation Oncology, University of Florida, Jacksonville, FL, USA.
| | | | | | | |
Collapse
|
21
|
Graf R, Boehmer D, Budach V, Wust P. Residual translational and rotational errors after kV X-ray image-guided correction of prostate location using implanted fiducials. Strahlenther Onkol 2010; 186:544-50. [PMID: 20936461 DOI: 10.1007/s00066-010-2030-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 07/19/2010] [Indexed: 12/25/2022]
Abstract
PURPOSE To evaluate the residual errors and required safety margins after stereoscopic kilovoltage (kV) X-ray target localization of the prostate in image-guided radiotherapy (IGRT) using internal fiducials. PATIENTS AND METHODS Radiopaque fiducial markers (FMs) have been inserted into the prostate in a cohort of 33 patients. The ExacTrac/Novalis Body™ X-ray 6d image acquisition system (BrainLAB AG, Feldkirchen, Germany) was used. Corrections were performed in left-right (LR), anterior-posterior (AP), and superior-inferior (SI) direction. Rotational errors around LR (x-axis), AP (y) and SI (z) have been recorded for the first series of nine patients, and since 2007 for the subsequent 24 patients in addition corrected in each fraction by using the Robotic Tilt Module™ and Varian Exact Couch™. After positioning, a second set of X-ray images was acquired for verification purposes. Residual errors were registered and again corrected. RESULTS Standard deviations (SD) of residual translational random errors in LR, AP, and SI coordinates were 1.3, 1.7, and 2.2 mm. Residual random rotation errors were found for lateral (around x, tilt), vertical (around y, table), and longitudinal (around z, roll) and of 3.2°, 1.8°, and 1.5°. Planning target volume (PTV)-clinical target volume (CTV) margins were calculated in LR, AP, and SI direction to 2.3, 3.0, and 3.7 mm. After a second repositioning, the margins could be reduced to 1.8, 2.1, and 1.8 mm. CONCLUSION On the basis of the residual setup error measurements, the margin required after one to two online X-ray corrections for the patients enrolled in this study would be at minimum 2 mm. The contribution of intrafractional motion to residual random errors has to be evaluated.
Collapse
Affiliation(s)
- Reinhold Graf
- Department of Radiation Oncology, Charite - University Medicine Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | | | | | | |
Collapse
|
22
|
Slagmolen P, Hermans J, Maes F, Budiharto T, Haustermans K, van den Heuvel F. Fast, accurate, and robust automatic marker detection for motion correction based on oblique kV or MV projection image pairs. Med Phys 2010; 37:1554-64. [PMID: 20443476 DOI: 10.1118/1.3355871] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE A robust and accurate method that allows the automatic detection of fiducial markers in MV and kV projection image pairs is proposed. The method allows to automatically correct for inter or intrafraction motion. METHODS Intratreatment MV projection images are acquired during each of five treatment beams of prostate cancer patients with four implanted fiducial markers. The projection images are first preprocessed using a series of marker enhancing filters. 2D candidate marker locations are generated for each of the filtered projection images and 3D candidate marker locations are reconstructed by pairing candidates in subsequent projection images. The correct marker positions are retrieved in 3D by the minimization of a cost function that combines 2D image intensity and 3D geometric or shape information for the entire marker configuration simultaneously. This optimization problem is solved using dynamic programming such that the globally optimal configuration for all markers is always found. Translational interfraction and intrafraction prostate motion and the required patient repositioning is assessed from the position of the centroid of the detected markers in different MV image pairs. The method was validated on a phantom using CT as ground-truth and on clinical data sets of 16 patients using manual marker annotations as ground-truth. RESULTS The entire setup was confirmed to be accurate to around 1 mm by the phantom measurements. The reproducibility of the manual marker selection was less than 3.5 pixels in the MV images. In patient images, markers were correctly identified in at least 99% of the cases for anterior projection images and 96% of the cases for oblique projection images. The average marker detection accuracy was 1.4 +/- 1.8 pixels in the projection images. The centroid of all four reconstructed marker positions in 3D was positioned within 2 mm of the ground-truth position in 99.73% of all cases. Detecting four markers in a pair of MV images takes a little less than a second where most time is spent on the image preprocessing. CONCLUSIONS The authors have developed a method to automatically detect multiple markers in a pair of projection images that is robust, accurate, and sufficiently fast for clinical use. It can be used for kV, MV, or mixed image pairs and can cope with limited motion between the projection images.
Collapse
Affiliation(s)
- Pieter Slagmolen
- Department of ESAT Medical Image Computing, Catholic University Leuven, Leuven 3000, Belgium.
| | | | | | | | | | | |
Collapse
|
23
|
Crijns W, Budiharto T, Defraene G, Verstraete J, Depuydt T, Haustermans K, Van den Heuvel F. IMRT-based optimization approaches for volumetric modulated single arc radiotherapy planning. Radiother Oncol 2010; 95:149-52. [DOI: 10.1016/j.radonc.2010.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 01/08/2010] [Accepted: 01/17/2010] [Indexed: 11/25/2022]
|
24
|
Garnica-Garza HM. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors. Phys Med Biol 2009; 54:5411-25. [DOI: 10.1088/0031-9155/54/18/004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Månsson Haskå T, Honoré H, Muren LP, Høyer M, Poulsen PR. Intrafraction changes of prostate position and geometrical errors studied by continuous electronic portal imaging. Acta Oncol 2009; 47:1351-7. [PMID: 18663646 DOI: 10.1080/02841860802256509] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE The use of marker-based on-line image guided radiotherapy for prostate cancer has considerably reduced the treatment margins to sub-cm. In this study we have quantified the residual set-up errors remaining after isocenter correction, studied their development during beam delivery and estimated their impact on margins. METHODS AND MATERIALS After initial on-line patient set-up based on orthogonal kV x-ray images of implanted fiducial markers, continuous electronic portal imaging was performed during treatment delivery in 10 of 39 treatment sessions for 20 prostate cancer patients. The cranio-caudal (CC) position of the centre-of-mass of the three markers was found using a threshold technique on every single image frame for all patients, typically 12-14 images for 5 treatment beams in every fraction. The CC prostate position was determined relative to its initial position at treatment onset and relative to its planned position within the field aperture. These results allowed determination of the CC intrafraction prostate motion and the intrafraction progression of the geometrical CC error, respectively. RESULTS At treatment onset the standard deviation (SD) of the set-up error was 1.0mm in the lateral direction and 1.5mm in the cranio-caudal (CC) direction. It did not depend significantly on the duration of the set-up procedure (mean: 3.0 min, span 1.2-14.6 min). The distribution of CC prostate positions relative to the position at treatment onset broadened from 0 to 1.4mm during the treatment session, while the corresponding CC setup error distribution broadened from 1.5 to 1.9 mm. This broadening means that the necessary CC setup margin increased by around 1mm during the treatment fraction. CONCLUSIONS Large differences in the intrafraction CC prostate motion patterns were found, however, intrafraction motion only results in a modest additional CC set-up margin of around 1mm relative to the margins needed for the residual set-up error at treatment start.
Collapse
|
26
|
Neoadjuvant androgen deprivation for prostate volume reduction: the optimal duration in prostate cancer radiotherapy. Urol Oncol 2009; 29:52-7. [PMID: 19523856 DOI: 10.1016/j.urolonc.2009.03.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 03/30/2009] [Accepted: 03/31/2009] [Indexed: 11/23/2022]
Abstract
OBJECTIVES For locally advanced prostate cancer, the results of radiotherapy are improved by combination with androgen deprivation therapy. Volume reduction achieved with neoadjuvant hormonal treatment can facilitate dose escalation without increasing the toxicity. The optimal duration of hormonal treatment, however, is unknown. The endpoint of this study is the optimal duration of androgen deprivation for prostate volume reduction in a cohort of patients scheduled for external beam radiotherapy. PATIENTS AND METHODS Twenty patients scheduled for external beam radiotherapy with cT2-3No/xMo prostate cancer were treated with a luteinizing hormone releasing hormone agonist (busereline) and nonsteroidal anti-androgen (nilutamide) for 9 months consecutively. Repeated CT scan examination was performed 3-monthly to measure prostate volumes until the start of radiation therapy. The analysis of volume reduction was performed with the Wilcoxon signed ranks test. RESULTS The baseline median prostate volume for the cohort of patients was 82 cc (95% CI: 61-104 cc) with a median volume reduction of 31% (95% CI: 26%-35%) (P < 0.0001) after 3 months of androgen deprivation. Between 3 and 6 months, a median volume reduction of 9% (95% CI: 4%-14%) (P < 0.0001) was observed. The effect was more pronounced in large prostates (>60 cc) than in small prostates (≤60 cc). In the total cohort of patients no significant volume reduction occurred between 6 and 9 months of maximal androgen blockade (MAB). CONCLUSIONS In this study, we have shown that the most significant prostate volume reduction is achieved after 3 months of MAB with a maximum reduction after 6 months. Therefore, the optimal duration of neoadjuvant androgen deprivation to reduce prostate volume before prostate cancer radiotherapy is 6 months. In small prostates 3 months of hormonal treatment may be enough for maximal volume reduction.
Collapse
|
27
|
Graf R, Wust P, Budach V, Boehmer D. Potentials of on-line repositioning based on implanted fiducial markers and electronic portal imaging in prostate cancer radiotherapy. Radiat Oncol 2009; 4:13. [PMID: 19397824 PMCID: PMC2683853 DOI: 10.1186/1748-717x-4-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Accepted: 04/27/2009] [Indexed: 12/25/2022] Open
Abstract
Background To evaluate the benefit of an on-line correction protocol based on implanted markers and weekly portal imaging in external beam radiotherapy of prostate cancer. To compare the use of bony anatomy versus implanted markers for calculation of setup-error plus/minus prostate movement. To estimate the error reduction (and the corresponding margin reduction) by reducing the total error to 3 mm once a week, three times per week or every treatment day. Methods 23 patients had three to five, 2.5 mm Ø spherical gold markers transrectally inserted into the prostate before radiotherapy. Verification and correction of treatment position by analysis of orthogonal portal images was performed on a weekly basis. We registered with respect to the bony contours (setup error) and to the marker position (prostate motion) and determined the total error. The systematic and random errors are specified. Positioning correction was applied with a threshold of 5 mm displacement. Results The systematic error (1 standard deviation [SD]) in left-right (LR), superior-inferior (SI) and anterior-posterior (AP) direction contributes for the setup 1.6 mm, 2.1 mm and 2.4 mm and for prostate motion 1.1 mm, 1.9 mm and 2.3 mm. The random error (1 SD) in LR, SI and AP direction amounts for the setup 2.3 mm, 2.7 mm and 2.7 mm and for motion 1.4 mm, 2.3 mm and 2.7 mm. The resulting total error suggests margins of 7.0 mm (LR), 9.5 mm (SI) and 9.5 mm (AP) between clinical target volume (CTV) and planning target volume (PTV). After correction once a week the margins were lowered to 6.7, 8.2 and 8.7 mm and furthermore down to 4.9, 5.1 and 4.8 mm after correcting every treatment day. Conclusion Prostate movement relative to adjacent bony anatomy is significant and contributes substantially to the target position variability. Performing on-line setup correction using implanted radioopaque markers and megavoltage radiography results in reduced treatment margins depending on the online imaging protocol (once a week or more frequently).
Collapse
Affiliation(s)
- Reinhold Graf
- Charité Universitätsmedizin Berlin, Department of Radiotherapy, Germany.
| | | | | | | |
Collapse
|
28
|
Budiharto T, Slagmolen P, Hermans J, Maes F, Verstraete J, Heuvel FVD, Depuydt T, Oyen R, Haustermans K. A semi-automated 2D/3D marker-based registration algorithm modelling prostate shrinkage during radiotherapy for prostate cancer. Radiother Oncol 2009; 90:331-6. [DOI: 10.1016/j.radonc.2008.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 10/09/2008] [Accepted: 10/12/2008] [Indexed: 11/15/2022]
|
29
|
MCGARRY CK, COSGROVE VP, FLEMING VAL, O'SULLIVAN JM, HOUNSELL AR. An analysis of geometric uncertainty calculations for prostate radiotherapy in clinical practice. Br J Radiol 2009; 82:140-7. [DOI: 10.1259/bjr/20582161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
30
|
OSEI EK, JIANG R, BARNETT R, FLEMING K, PANJWANI D. Evaluation of daily online set-up errors and organ displacement uncertainty during conformal radiation treatment of the prostate. Br J Radiol 2009; 82:49-61. [DOI: 10.1259/bjr/58088207] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
31
|
Lasserre P, Cutt B, Moffat J. Edge detection of the radiation field in double exposure portal images using a curve propagation algorithm. J Appl Clin Med Phys 2008; 9:3-16. [PMID: 19020476 PMCID: PMC5722364 DOI: 10.1120/jacmp.v9i4.2710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 04/16/2008] [Accepted: 04/28/2008] [Indexed: 11/25/2022] Open
Abstract
An accurate detection of the radiation field is crucial to 3D conformal radiotherapy (3D‐CRT). Automated techniques to detect the field edges on double exposure portal images have previously focused on thresholding techniques. In this paper, we present a new approach based on a curve propagation technique (the Fast Marching method) which proves to be more effective at detecting the radiation field than its thresholding counterpart. The comparison of both techniques in terms of computational speed and effectiveness of the detection is presented using complex images with non‐homogeneous intensity levels inside the radiation field, and gradual variations in intensity level at the field boundaries. Results show that our Fast Marching method is easier to automate, and converges faster to the boundaries of the segmented radiation field. The computation time of the Fast Marching technique is five times faster in typical portal images. PACS numbers: 87.53.Oq, 87.57.Nk, 87.57.‐s.
Collapse
Affiliation(s)
- Patricia Lasserre
- Irving K. Barber School of Arts and Sciences, University of British Columbia Okanagan, Kelowna, Canada
| | - Bryce Cutt
- Irving K. Barber School of Arts and Sciences, University of British Columbia Okanagan, Kelowna, Canada
| | - James Moffat
- Irving K. Barber School of Arts and Sciences, University of British Columbia Okanagan, Kelowna, Canada
| |
Collapse
|
32
|
Liu B, Lerma FA, Patel S, Amin P, Feng Y, Yi BY, Yu C. Dosimetric effects of the prone and supine positions on image guided localized prostate cancer radiotherapy. Radiother Oncol 2008; 88:67-76. [DOI: 10.1016/j.radonc.2007.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Revised: 11/15/2007] [Accepted: 11/25/2007] [Indexed: 01/21/2023]
|
33
|
Rybovic M, Banati RB, Cox J. Radiation therapy treatment verification imaging in Australia and New Zealand. J Med Imaging Radiat Oncol 2008; 52:183-90. [PMID: 18373812 DOI: 10.1111/j.1440-1673.2008.01940.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An original questionnaire was used to investigate the available types of reference and treatment image verification equipment and specific practices related to image analysis. A section on treatment site-specific imaging was included. The questionnaire was distributed to all radiation oncology facilities in Australia and New Zealand. A response rate of 87% (40/46) was achieved. Most facilities (90%) in Australia and New Zealand reported the availability of electronic portal imaging devices. Use of computer software to assist with image interpretation was indicated by 92% of centres. Frequency of image acquisition and tolerance levels used for radical treatment sites were variable, but palliative treatment site protocols were more consistent between treatment facilities. In conclusion, departments should strive to use evidence-based protocols and guidelines to ensure acceptable accuracy in treatment delivery.
Collapse
Affiliation(s)
- M Rybovic
- Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
34
|
Nijkamp J, Pos FJ, Nuver TT, de Jong R, Remeijer P, Sonke JJ, Lebesque JV. Adaptive Radiotherapy for Prostate Cancer Using Kilovoltage Cone-Beam Computed Tomography: First Clinical Results. Int J Radiat Oncol Biol Phys 2008; 70:75-82. [PMID: 17869445 DOI: 10.1016/j.ijrobp.2007.05.046] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/31/2007] [Accepted: 05/31/2007] [Indexed: 10/22/2022]
Abstract
PURPOSE To evaluate the first clinical results of an off-line adaptive radiotherapy (ART) protocol for prostate cancer using kilovoltage cone-beam computed tomography (CBCT) in combination with a diet and mild laxatives. METHODS AND MATERIALS Twenty-three patients began treatment with a planning target volume (PTV) margin of 10 mm. The CBCT scans acquired during the first six fractions were used to generate an average prostate clinical target volume (AV-CTV), and average rectum (AV-Rect). Using these structures, a new treatment plan was generated with a 7-mm PTV margin. Weekly CBCT scans were used to monitor the CTV coverage. A diet and mild laxatives were introduced to improve image quality and reduce prostate motion. RESULTS Twenty patients were treated with conform ART protocol. For these patients, 91% of the CBCT scans could be used to calculate the AV-CTV and AV-Rect. In 96% of the follow-up CBCT scans, the CTV was located within the average PTV. In the remaining 4%, the prostate extended the PTV by a maximum of 1 mm. Systematic and random errors for organ motion were reduced by a factor of two compared with historical data without diet and laxatives. An average PTV reduction of 29% was achieved. The volume of the AV-Rect that received >65 Gy was reduced by 19%. The mean dose to the anal wall was reduced on average by 4.8 Gy. CONCLUSIONS We safely reduced the high-dose region by 29%. The reduction in irradiated volume led to a significant reduction in the dose to the rectum. The diet and laxatives improved the image quality and tended to reduce prostate motion.
Collapse
Affiliation(s)
- Jasper Nijkamp
- Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Verellen D, Ridder MD, Storme G. A (short) history of image-guided radiotherapy. Radiother Oncol 2008; 86:4-13. [DOI: 10.1016/j.radonc.2007.11.023] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/18/2007] [Accepted: 11/20/2007] [Indexed: 12/25/2022]
|
36
|
Beltran C, Herman MG, Davis BJ. Planning Target Margin Calculations for Prostate Radiotherapy Based on Intrafraction and Interfraction Motion Using Four Localization Methods. Int J Radiat Oncol Biol Phys 2008; 70:289-95. [DOI: 10.1016/j.ijrobp.2007.08.040] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 06/26/2007] [Accepted: 08/22/2007] [Indexed: 11/28/2022]
|
37
|
McNair HA, Hansen VN, Parker CC, Evans PM, Norman A, Miles E, Harris EJ, Del-Acroix L, Smith E, Keane R, Khoo VS, Thompson AC, Dearnaley DP. A comparison of the use of bony anatomy and internal markers for offline verification and an evaluation of the potential benefit of online and offline verification protocols for prostate radiotherapy. Int J Radiat Oncol Biol Phys 2007; 71:41-50. [PMID: 17996391 DOI: 10.1016/j.ijrobp.2007.09.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 09/06/2007] [Accepted: 09/10/2007] [Indexed: 11/15/2022]
Abstract
PURPOSE To evaluate the utility of intraprostatic markers in the treatment verification of prostate cancer radiotherapy. Specific aims were: to compare the effectiveness of offline correction protocols, either using gold markers or bony anatomy; to estimate the potential benefit of online correction protocol's using gold markers; to determine the presence and effect of intrafraction motion. METHODS AND MATERIALS Thirty patients with three gold markers inserted had pretreatment and posttreatment images acquired and were treated using an offline correction protocol and gold markers. Retrospectively, an offline protocol was applied using bony anatomy and an online protocol using gold markers. RESULTS The systematic errors were reduced from 1.3, 1.9, and 2.5 mm to 1.1, 1.1, and 1.5 mm in the right-left (RL), superoinferior (SI), and anteroposterior (AP) directions, respectively, using the offline correction protocol and gold markers instead of bony anatomy. The subsequent decrease in margins was 1.7, 3.3, and 4 mm in the RL, SI, and AP directions, respectively. An offline correction protocol combined with an online correction protocol in the first four fractions reduced random errors further to 0.9, 1.1, and 1.0 mm in the RL, SI, and AP directions, respectively. A daily online protocol reduced all errors to <1 mm. Intrafraction motion had greater impact on the effectiveness of the online protocol than the offline protocols. CONCLUSIONS An offline protocol using gold markers is effective in reducing the systematic error. The value of online protocols is reduced by intrafraction motion.
Collapse
Affiliation(s)
- Helen A McNair
- Department of Radiotherapy, Royal Marsden NHS Trust and Institute of Cancer Research, Sutton, Surrey, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Poulsen PR, Muren LP, Høyer M. Residual set-up errors and margins in on-line image-guided prostate localization in radiotherapy. Radiother Oncol 2007; 85:201-6. [PMID: 17904671 DOI: 10.1016/j.radonc.2007.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 08/27/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND PURPOSE Image-guided on-line correction of the target position allows radiotherapy of prostate cancer with narrow set-up margins. The present study investigated the residual set-up error after on-line prostate localization and its impact on margins. MATERIALS AND METHODS Prostate localization based on two orthogonal X-ray images of gold markers implanted in the prostate was performed with an on-board imager at four treatment sessions for 90 patients. The set-up error in the sagittal plane residual after couch adjustment was evaluated on lateral verification portal images. RESULTS The set-up error was less than 3.0mm in 92% of the cases in the anterior-posterior (AP) direction and in 95% of the cases in the cranio-caudal (CC) direction. The set-up error was dominated by internal prostate motion taking place during the set-up procedure. Set-up margins were calculated using two formalisms: margins designed to ensure a minimum CTV dose of 95% for 90% of the patient population were 3.6mm (AP) and 3.5mm (CC). Patient-independent normal distributed set-up errors would result in margins of 4.3mm (AP) and 4.0mm (CC) to ensure complete CTV inclusion in the PTV with 90% probability. CONCLUSION Internal prostate motion during the set-up procedure was the main contributor to residual set-up errors.
Collapse
|
39
|
Langenhuijsen JF, van Lin ENJT, Kiemeney LA, van der Vight LP, McColl GM, Visser AG, Witjes JA. Ultrasound-Guided Transrectal Implantation of Gold Markers for Prostate Localization During External Beam Radiotherapy: Complication Rate and Risk Factors. Int J Radiat Oncol Biol Phys 2007; 69:671-6. [PMID: 17512133 DOI: 10.1016/j.ijrobp.2007.04.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 02/21/2007] [Accepted: 04/02/2007] [Indexed: 11/17/2022]
Abstract
PURPOSE To report the complication rate and risk factors of transrectally implanted gold markers, used for prostate position verification and correction procedures. METHODS AND MATERIALS In 209 consecutive men with localized prostate cancer, four gold markers (1 x 7 mm) were inserted under ultrasound guidance in an outpatient setting, and the toxicity was analyzed. All patients received a questionnaire regarding complications after marker implantation. The complications and risk factors were further evaluated by reviewing the medical charts. RESULTS Of the 209 men, 13 (6.2%) had a moderate complication, consisting of pain and fever that resolved after treatment with oral medication. In 1.9% of the men, minor voiding complaints were observed. Other minor transient complications, defined as hematuria lasting >3 days, hematospermia, and rectal bleeding, occurred in 3.8%, 18.5%, and 9.1% of the patients, respectively. These complications were seen more often in patients with advanced tumor stage, younger age, and shorter duration of hormonal therapy. CONCLUSION Transrectal gold marker implantation for high-precision prostate radiotherapy is a safe and well-tolerated procedure.
Collapse
Affiliation(s)
- Johan F Langenhuijsen
- Department of Urology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
40
|
Jereczek-Fossa BA, Orecchia R. Evidence-based radiation oncology: Definitive, adjuvant and salvage radiotherapy for non-metastatic prostate cancer. Radiother Oncol 2007; 84:197-215. [PMID: 17532494 DOI: 10.1016/j.radonc.2007.04.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 04/08/2007] [Accepted: 04/18/2007] [Indexed: 02/07/2023]
Abstract
The standard treatment options based on the risk category (stage, Gleason score, PSA) for localized prostate cancer include surgery, radiotherapy and watchful waiting. The literature does not provide clear-cut evidence for the superiority of surgery over radiotherapy, whereas both approaches differ in their side effects. The definitive external beam irradiation is frequently employed in stage T1b-T1c, T2 and T3 tumors. There is a pretty strong evidence that intermediate- and high-risk patients benefit from dose escalation. The latter requires reduction of the irradiated normal tissue (using 3-dimensional conformal approach, intensity modulated radiotherapy, image-guided radiotherapy, etc.). Recent data suggest that prostate cancer may benefit from hypofractionation due to relatively low alpha/beta ratio; these findings warrant confirmation though. The role of whole pelvis irradiation is still controversial. Numerous randomized trials demonstrated a clinical benefit in terms of biochemical control, local and distant control, and overall survival from the addition of androgen suppression to external beam radiotherapy in intermediate- and high-risk patients. These studies typically included locally advanced (T3-T4) and poor-prognosis (Gleason score >7 and/or PSA >20 ng/mL) tumors and employed neoadjuvant/concomitant/adjuvant androgen suppression rather than only adjuvant setting. The ongoing trials will hopefully further define the role of endocrine treatment in more favorable risk patients and in the setting of the dose escalated radiotherapy. Brachytherapy (BRT) with permanent implants may be offered to low-risk patients (cT1-T2a, Gleason score <7, or 3+4, PSA <or=10 ng/mL), with prostate volume of <or=50 ml, no previous transurethral prostate resection and a good urinary function. Some recent data suggest a benefit from combining external beam irradiation and BRT for intermediate-risk patients. EBRT after radical prostatectomy improves disease-free survival and biochemical and local control rates in patients with positive surgical margins or pT3 tumors. Salvage radiotherapy may be considered at the time of biochemical failure in previously non-irradiated patients.
Collapse
|
41
|
Nijsten SMJJG, Mijnheer BJ, Dekker ALAJ, Lambin P, Minken AWH. Routine individualised patient dosimetry using electronic portal imaging devices. Radiother Oncol 2007; 83:65-75. [PMID: 17383761 DOI: 10.1016/j.radonc.2007.03.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 02/16/2007] [Accepted: 03/01/2007] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE To analyse the results of routine EPID measurements for individualised patient dosimetry. MATERIALS AND METHODS Calibrated camera-based EPIDs were used to measure the central field dose, which was compared with a dose prediction at the EPID level. For transit dosimetry, dose data were calculated using patient transmission and scatter, and compared with measured values. Furthermore, measured transit dose data were back-projected to an in vivo dose value at 5 cm depth in water (D(5)) and directly compared with D(5) from the treatment planning system. Dose differences per treatment session were calculated by weighting dose values with the number of monitor units per beam. Reported errors were categorised and analysed for approximately 37,500 images from 2511 patients during a period of 24 months. RESULTS Pre-treatment measurements showed a mean dose difference per treatment session of 0.0+/-1.7% (1 SD). Transfer errors were detected and corrected prior to the first treatment session. An accelerator output variation of about 4% was found between two weekly QC measurements. Patient dosimetry showed mean transit and D(5) dose differences of -0.7+/-5.2% (1 SD) and -0.3+/-5.6% (1 SD) per treatment session, respectively. Dose differences could be related to set-up errors, organ motion, erroneous density corrections and changes in patient anatomy. CONCLUSIONS EPIDs can be used routinely to accurately verify treatment parameter transfer and machine output. By applying transit and in vivo dosimetry, more insight can be obtained with respect to the different error sources influencing dose delivery to a patient.
Collapse
Affiliation(s)
- Sebastiaan M J J G Nijsten
- Department of Radiation Oncology (MAASTRO), GROW, University Hospital of Maastricht, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
42
|
Soete G, De Cock M, Verellen D, Michielsen D, Keuppens F, Storme G. X-ray–assisted positioning of patients treated by conformal arc radiotherapy for prostate cancer: Comparison of setup accuracy using implanted markers versus bony structures. Int J Radiat Oncol Biol Phys 2007; 67:823-7. [PMID: 17197124 DOI: 10.1016/j.ijrobp.2006.09.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 08/24/2006] [Accepted: 09/22/2006] [Indexed: 11/18/2022]
Abstract
PURPOSE The aim of this study was to compare setup accuracy of NovalisBody stereoscopic X-ray positioning using implanted markers in the prostate vs. bony structures in patients treated with dynamic conformal arc radiotherapy for prostate cancer. METHODS AND MATERIALS Random and systematic setup errors (RE and SE) of the isocenter with regard to the center of gravity of three fiducial markers were measured by means of orthogonal verification films in 120 treatment sessions in 12 patients. Positioning was performed using NovalisBody semiautomated marker fusion. The results were compared with a control group of 261 measurements in 15 patients who were positioned with NovalisBody automated bone fusion. In addition, interfraction and intrafraction prostate motion was registered in the patients with implanted markers. RESULTS Marker-based X-ray positioning resulted in a reduction of RE as well as SE in the anteroposterior, craniocaudal, and left-right directions compared with those in the control group. The interfraction prostate displacements with regard to the bony pelvis that could be avoided by marker positioning ranged between 1.6 and 2.8 mm for RE and between 1.3 and 4.3 mm for SE. Intrafraction random and systematic prostate movements ranged between 1.4 and 2.4 mm and between 0.8 and 1.3 mm, respectively. CONCLUSION The problem of interfraction prostate motion can be solved by using implanted markers. In addition, the NovalisBody X-ray system performs more accurately with markers compared with bone fusion. Intrafraction organ motion has become the limiting factor for margin reduction around the clinical target volume.
Collapse
Affiliation(s)
- Guy Soete
- Department of Radiotherapy, Academic Hospital Free University of Brussels, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
43
|
Naudy S, Peignaux K, Brenier JP, Créhange G, Arnaud A, Truc G, Bidault F, Maingon P. Mise en œuvre de la radiothérapie conformationnelle par modulation d'intensité guidée par échographie transabdominale. Cancer Radiother 2006; 10:388-93. [PMID: 16920375 DOI: 10.1016/j.canrad.2006.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE Optically guided ultrasound imaging has been used in our department since 2003 in order to implement an on line correction scheme in intensity modulated radiation therapy of prostate carcinoma. PATIENTS AND METHODS The corrections observed during the initial time period of the system (17 patients) are compared to those observed more recently (10 patients). Treatment margins are calculated. RESULTS Overall systematic errors decreased between 2003 and 2006, and are presently statistically not different from zero. Random errors remain the same (max 4.3 mm). Proposed margins are 7 mm both in lateral and longitudinal direction and 8.4 mm in anteroposterior. CONCLUSION Ultrasound can be used for on line correction of both positioning and internal organs motion errors and allows reduction of the margins between clinical and planning volume.
Collapse
Affiliation(s)
- S Naudy
- Unité de Radiophysique, Centre Georges-François-Leclerc, 1, Rue du Professeur-Marion, 21079 Dijon Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|