1
|
Brothwell M, Slevin F, Pawsey A, Radhakrishna G, E Troost, Suresh P, Cooper R. Radiology Training for Clinical Oncology Trainees. Clin Oncol (R Coll Radiol) 2024; 36:537-540. [PMID: 38876806 DOI: 10.1016/j.clon.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 06/16/2024]
Affiliation(s)
- M Brothwell
- University College London Hospitals, 235 Euston Road, London, NW1 2BU, UK.
| | - F Slevin
- University of Leeds, UK; Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - A Pawsey
- University College London Hospitals, London, UK
| | | | - E Troost
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - P Suresh
- University Hospitals Plymouth NHS Trust, Derriford Hospital, Plymouth, UK
| | - R Cooper
- Leeds Cancer Centre, St James's University Hospital, Leeds, UK
| |
Collapse
|
2
|
Thorwarth D. Clinical use of positron emission tomography for radiotherapy planning - Medical physics considerations. Z Med Phys 2023; 33:13-21. [PMID: 36272949 PMCID: PMC10068574 DOI: 10.1016/j.zemedi.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
PET/CT imaging plays an increasing role in radiotherapy treatment planning. The aim of this article was to identify the major use cases and technical as well as medical physics challenges during integration of these data into treatment planning. Dedicated aspects, such as (i) PET/CT-based radiotherapy simulation, (ii) PET-based target volume delineation, (iii) functional avoidance to optimized organ-at-risk sparing and (iv) functionally adapted individualized radiotherapy are discussed in this article. Furthermore, medical physics aspects to be taken into account are summarized and presented in form of check-lists.
Collapse
Affiliation(s)
- Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
3
|
Schneider M, Bodenstein E, Bock J, Dietrich A, Gantz S, Heuchel L, Krause M, Lühr A, von Neubeck C, Nexhipi S, Schürer M, Tillner F, Beyreuther E, Suckert T, Müller JR. Combined proton radiography and irradiation for high-precision preclinical studies in small animals. Front Oncol 2022; 12:982417. [PMID: 36419890 PMCID: PMC9677333 DOI: 10.3389/fonc.2022.982417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Proton therapy has become a popular treatment modality in the field of radiooncology due to higher spatial dose conformity compared to conventional radiotherapy, which holds the potential to spare normal tissue. Nevertheless, unresolved research questions, such as the much debated relative biological effectiveness (RBE) of protons, call for preclinical research, especially regarding in vivo studies. To mimic clinical workflows, high-precision small animal irradiation setups with image-guidance are needed. MATERIAL AND METHODS A preclinical experimental setup for small animal brain irradiation using proton radiographies was established to perform planning, repositioning, and irradiation of mice. The image quality of proton radiographies was optimized regarding the resolution, contrast-to-noise ratio (CNR), and minimal dose deposition in the animal. Subsequently, proof-of-concept histological analysis was conducted by staining for DNA double-strand breaks that were then correlated to the delivered dose. RESULTS The developed setup and workflow allow precise brain irradiation with a lateral target positioning accuracy of<0.26mm for in vivo experiments at minimal imaging dose of<23mGy per mouse. The custom-made software for image registration enables the fast and precise animal positioning at the beam with low observer-variability. DNA damage staining validated the successful positioning and irradiation of the mouse hippocampus. CONCLUSION Proton radiography enables fast and effective high-precision lateral alignment of proton beam and target volume in mouse irradiation experiments with limited dose exposure. In the future, this will enable irradiation of larger animal cohorts as well as fractionated proton irradiation.
Collapse
Affiliation(s)
- Moritz Schneider
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Elisabeth Bodenstein
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Johanna Bock
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Antje Dietrich
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), partner site Dresden- German Cancer Research Center DKFZ, Heidelberg, Germany
| | - Sebastian Gantz
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Lena Heuchel
- Technical University (TU) Dortmund- Faculty of Physics, Medical Physics and Radiotherapy, Dortmund, Germany
| | - Mechthild Krause
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), partner site Dresden- German Cancer Research Center DKFZ, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden, Dresden, Germany
| | - Armin Lühr
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- Technical University (TU) Dortmund- Faculty of Physics, Medical Physics and Radiotherapy, Dortmund, Germany
| | - Cläre von Neubeck
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), partner site Dresden- German Cancer Research Center DKFZ, Heidelberg, Germany
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sindi Nexhipi
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Michael Schürer
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Falk Tillner
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden, Dresden, Germany
| | - Elke Beyreuther
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Theresa Suckert
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), partner site Dresden- German Cancer Research Center DKFZ, Heidelberg, Germany
| | - Johannes Richard Müller
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Deutsche Forschungsgemeinschaft Cluster of Excellence 'Physics of Life', Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
4
|
Zhang H, Fu C, Fan M, Lu L, Chen Y, Liu C, Sun H, Zhao Q, Han D, Li B, Huang W. Reduction of inter-observer variability using MRI and CT fusion in delineating of primary tumor for radiotherapy in lung cancer with atelectasis. Front Oncol 2022; 12:841771. [PMID: 35992838 PMCID: PMC9381816 DOI: 10.3389/fonc.2022.841771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose To compare the difference between magnetic resonance imaging (MRI) and computed tomography (CT) in delineating the target area of lung cancer with atelectasis. Method A retrospective analysis was performed on 15 patients with lung cancer accompanied by atelectasis. All positioning images were transferred to Eclipse treatment planning systems (TPSs). Six MRI sequences (T1WI, T1WI+C, T1WI+C Delay, T1WI+C 10 minutes, T2WI, DWI) were registered with positioning CT. Five radiation oncologists delineated the tumor boundary to obtain the gross tumor volume (GTV). Conformity index (CI) and dice coefficient (DC) were used to measure differences among observers. Results The differences in delineation mean volumes, CI, and DC among CT and MRIs were significant. Multiple comparisons were made between MRI sequences and CT. Among them, DWI, T2WI, and T1WI+C 10 minutes sequences were statistically significant with CT in mean volumes, DC, and CI. The mean volume of DWI, T2WI, and T1WI+C 10 minutes sequence in the target area is significantly smaller than that on the CT sequence, but the consistency is higher than that of CT sequences. Conclusions The recognition of atelectasis by MRI was better than that by CT, which could reduce interobserver variability of primary tumor delineation in lung cancer with atelectasis. Among them, DWI, T2WI, T1WI+C 10 minutes may be a better choice to improve the GTV delineation of lung cancer patients with atelectasis.
Collapse
Affiliation(s)
- Hongjiao Zhang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chengrui Fu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Min Fan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Liyong Lu
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Yiru Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chengxin Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hongfu Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qian Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Dan Han
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Wei Huang,
| |
Collapse
|
5
|
Zhang YZ, Zhu XG, Song MX, Yao KN, Li S, Geng JH, Wang HZ, Li YH, Cai Y, Wang WH. Improving the accuracy and consistency of clinical target volume delineation for rectal cancer by an education program. World J Gastrointest Oncol 2022; 14:1027-1036. [PMID: 35646284 PMCID: PMC9124985 DOI: 10.4251/wjgo.v14.i5.1027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Accurate target volume delineation is the premise for the implementation of precise radiotherapy. Inadequate target volume delineation may diminish tumor control or increase toxicity. Although several clinical target volume (CTV) delineation guidelines for rectal cancer have been published in recent years, significant interobserver variation (IOV) in CTV delineation still exists among radiation oncologists. However, proper education may serve as a bridge that connects complex guidelines with clinical practice.
AIM To examine whether an education program could improve the accuracy and consistency of preoperative radiotherapy CTV delineation for rectal cancer.
METHODS The study consisted of a baseline target volume delineation, a 150-min education intervention, and a follow-up evaluation. A 42-year-old man diagnosed with stage IIIC (T3N2bM0) rectal adenocarcinoma was selected for target volume delineation. CTVs obtained before and after the program were compared. Dice similarity coefficient (DSC), inclusiveness index (IncI), conformal index (CI), and relative volume difference [ΔV (%)] were analyzed to quantitatively evaluate the disparities between the participants’ delineation and the standard CTV. Maximum volume ratio (MVR) and coefficient of variation (CV) were calculated to assess the IOV. Qualitative analysis included four common controversies in CTV delineation concerning the upper boundary of the target volume, external iliac area, groin area, and ischiorectal fossa.
RESULTS Of the 18 radiation oncologists from 10 provinces in China, 13 completed two sets of CTVs. In quantitative analysis, the average CTV volume decreased from 809.82 cm3 to 705.21 cm3 (P = 0.001) after the education program. Regarding the indices for geometric comparison, the mean DSC, IncI, and CI increased significantly, while ΔV (%) decreased remarkably, indicating improved agreement between participants’ delineation and the standard CTV. Moreover, an 11.80% reduction in MVR and 18.19% reduction in CV were noted, demonstrating a smaller IOV in delineation after the education program. Regarding qualitative analysis, the greatest variations in baseline were observed at the external iliac area and ischiorectal fossa; 61.54% (8/13) and 53.85% (7/13) of the participants unnecessarily delineated the external iliac area and the ischiorectal fossa, respectively. However, the education program reduced these variations.
CONCLUSION Wide variations in CTV delineation for rectal cancer are present among radiation oncologists in mainland China. A well-structured education program could improve delineation accuracy and reduce IOVs.
Collapse
Affiliation(s)
- Yang-Zi Zhang
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiang-Gao Zhu
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ma-Xiaowei Song
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Kai-Ning Yao
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Shuai Li
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jian-Hao Geng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hong-Zhi Wang
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yong-Heng Li
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yong Cai
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Wei-Hu Wang
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
6
|
Abstract
The delineation of organs at risk is the basis of radiotherapy oncologists' work. Indeed, the knowledge of this delineation enables to better identify the target volumes and to optimize dose distribution, involving the prognosis of the patients but also their future. The learning of this delineation must continue throughout the clinician's career. Some contour changes have appeared with better imaging, some volumes are now required due to development of knowledge of side effects. In addition, the increasing survival time of patients requires to be more systematic and precise in the delineations, both to avoid complications until now exceptional but also because re-irradiations are becoming more and more frequent. We present the update of the recommendations of the French Society for Radiation Oncology (SFRO) on new findings or adaptations to volumes at risk.
Collapse
Affiliation(s)
- G Noël
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France.
| | - C Le Fèvre
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France
| | - D Antoni
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France
| |
Collapse
|
7
|
Mercieca S, Belderbos JSA, van Herk M. Challenges in the target volume definition of lung cancer radiotherapy. Transl Lung Cancer Res 2021; 10:1983-1998. [PMID: 34012808 PMCID: PMC8107734 DOI: 10.21037/tlcr-20-627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Radiotherapy, with or without systemic treatment has an important role in the management of lung cancer. In order to deliver the treatment accurately, the clinician must precisely outline the gross tumour volume (GTV), mostly on computed tomography (CT) images. However, due to the limited contrast between tumour and non-malignant changes in the lung tissue, it can be difficult to distinguish the tumour boundaries on CT images leading to large interobserver variation and differences in interpretation. Therefore the definition of the GTV has often been described as the weakest link in radiotherapy with its inaccuracy potentially leading to missing the tumour or unnecessarily irradiating normal tissue. In this article, we review the various techniques that can be used to reduce delineation uncertainties in lung cancer.
Collapse
Affiliation(s)
- Susan Mercieca
- Faculty of Health Science, University of Malta, Msida, Malta.,The University of Amsterdam, Amsterdam, The Netherlands
| | - José S A Belderbos
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marcel van Herk
- University of Manchester, Manchester Academic Health Centre, The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
8
|
Mercieca S, Pan S, Belderbos J, Salem A, Tenant S, Aznar MC, Woolf D, Radhakrishna G, van Herk M. Impact of Peer Review in Reducing Uncertainty in the Definition of the Lung Target Volume Among Trainee Oncologists. Clin Oncol (R Coll Radiol) 2020; 32:363-372. [PMID: 32033892 DOI: 10.1016/j.clon.2020.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/06/2019] [Accepted: 12/04/2019] [Indexed: 12/25/2022]
Abstract
AIMS To evaluate the impact of peer review and contouring workshops on reducing uncertainty in target volume delineation for lung cancer radiotherapy. MATERIALS AND METHODS Data from two lung cancer target volume delineation courses were analysed. In total, 22 trainees in clinical oncology working across different UK centres attended these courses with priori experience in lung cancer radiotherapy. The courses were made up of short presentations and contouring practice sessions. The participants were divided into two groups and asked to first individually delineate (IND) and then individually peer review (IPR) the contours of another participant. The contours were discussed with an expert panel consisting of two consultant clinical oncologists and a consultant radiologist. Contours were analysed quantitatively by measuring the volume and local distance standard deviation (localSD) from the reference expert consensus contour and qualitatively through visual analysis. Feedback from the participants was obtained using a questionnaire. RESULTS All participants applied minor editing to the contours during IPR, leading to a non-statistically significant reduction in the mean delineated volume (IND = 140.92 cm3, IPR = 125.26 cm3, P = 0.211). The overall interobserver variation was similar, with a localSD of 0.33 cm and 0.38 cm for the IND and IPR, respectively (P = 0.848). Six participants (29%) carried out correct major changes by either including tumour or excluding healthy tissue. One participant (5%) carried out an incorrect edit by excluding parts of the tumour, while another observer failed to identify a major contour error. The participants' level of confidence in target volume delineation increased following the course and identified the discussions with the radiologist and colleagues as the most important highlights of the course. CONCLUSION IPR could improve target volume delineation quality among trainee oncologists by identifying most major contour errors. However, errors were also introduced after IPR, suggesting the need to further discuss major changes with a multidisciplinary team.
Collapse
Affiliation(s)
- S Mercieca
- Faculty of Health Science, University of Malta, Msida, Malta; Faculty of Medicine (AMC), University of Amsterdam, Amsterdam, The Netherlands.
| | - S Pan
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - J Belderbos
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - A Salem
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK; University of Manchester, Manchester Academic Health Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - S Tenant
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - M C Aznar
- University of Manchester, Manchester Academic Health Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - D Woolf
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - G Radhakrishna
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - M van Herk
- University of Manchester, Manchester Academic Health Centre, The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
9
|
Mercieca S, Belderbos J, Gilson D, Dickson J, Pan S, van Herk M. Implementing the Royal College of Radiologists' Radiotherapy Target Volume Definition and Peer Review Guidelines: More Still To Do? Clin Oncol (R Coll Radiol) 2019; 31:706-710. [DOI: 10.1016/j.clon.2019.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
|
10
|
Konert T, Vogel WV, Paez D, Polo A, Fidarova E, Carvalho H, Duarte PS, Zuliani AC, Santos AO, Altuhhova D, Karusoo L, Kapoor R, Sood A, Khader J, Al-Ibraheem A, Numair Y, Abubaker S, Soydal C, Kütük T, Le TA, Canh NX, Bieu BQ, Ha LN, Belderbos JSA, MacManus MP, Thorwarth D, Hanna GG. Introducing FDG PET/CT-guided chemoradiotherapy for stage III NSCLC in low- and middle-income countries: preliminary results from the IAEA PERTAIN trial. Eur J Nucl Med Mol Imaging 2019; 46:2235-2243. [PMID: 31367906 PMCID: PMC6717604 DOI: 10.1007/s00259-019-04421-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/30/2019] [Indexed: 12/24/2022]
Abstract
Purpose Patients with stage III non-small-cell lung cancer (NSCLC) treated with chemoradiotherapy (CRT) in low- and middle-income countries (LMIC) continue to have a poor prognosis. It is known that FDG PET/CT improves staging, treatment selection and target volume delineation (TVD), and although its use has grown rapidly, it is still not widely available in LMIC. CRT is often used as sequential treatment, but is known to be more effective when given concurrently. The aim of the PERTAIN study was to assess the impact of introducing FDG PET/CT-guided concurrent CRT, supported by training and quality control (QC), on the overall survival (OS) and progression-free survival (PFS) of patients with stage III NSCLC. Methods The study included patients with stage III NSCLC from nine medical centres in seven countries. A retrospective cohort was managed according to local practices between January 2010 and July 2014, which involved only optional diagnostic FDG PET/CT for staging (not for TVD), followed by sequential or concurrent CRT. A prospective cohort between August 2015 and October 2018 was treated according to the study protocol including FDG PET/CT in treatment position for staging and multimodal TVD followed by concurrent CRT by specialists trained in protocol-specific TVD and with TVD QC. Kaplan–Meier analysis was used to assess OS and PFS in the retrospective and prospective cohorts. Results Guidelines for FDG PET/CT image acquisition and TVD were developed and published. All specialists involved in the PERTAIN study received training between June 2014 and May 2016. The PET/CT scanners used received EARL accreditation. In November 2018 a planned interim analysis was performed including 230 patients in the retrospective cohort with a median follow-up of 14 months and 128 patients in the prospective cohort, of whom 69 had a follow-up of at least 1 year. Using the Kaplan–Meier method, OS was significantly longer in the prospective cohort than in the retrospective cohort (23 vs. 14 months, p = 0.012). In addition, median PFS was significantly longer in the prospective cohort than in the retrospective cohort (17 vs. 11 months, p = 0.012). Conclusion In the PERTAIN study, the preliminary results indicate that introducing FDG PET/CT-guided concurrent CRT for patients with stage III NSCLC in LMIC resulted in a significant improvement in OS and PFS. The final study results based on complete data are expected in 2020. Electronic supplementary material The online version of this article (10.1007/s00259-019-04421-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- T Konert
- Nuclear Medicine Department, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - W V Vogel
- Nuclear Medicine Department, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - D Paez
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - A Polo
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - E Fidarova
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - H Carvalho
- Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo - Institute of Cancer of Sao Paulo State, São Paulo, Brazil
| | - P S Duarte
- Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo - Institute of Cancer of Sao Paulo State, São Paulo, Brazil
| | - A C Zuliani
- Department of Radiation Oncology and Nuclear Medicine Department, Hospital das Clínicas, Campinas University, Campinas, Brazil
| | - A O Santos
- Department of Radiation Oncology and Nuclear Medicine Department, Hospital das Clínicas, Campinas University, Campinas, Brazil
| | - D Altuhhova
- Department of Radiation Oncology and Radiology Department, North Estonia Medical Center, Tallinn, Estonia
| | - L Karusoo
- Department of Radiation Oncology and Radiology Department, North Estonia Medical Center, Tallinn, Estonia
| | - R Kapoor
- Department of Radiation Oncology and Nuclear Medicine Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - A Sood
- Department of Radiation Oncology and Nuclear Medicine Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - J Khader
- Department of Radiation Oncology and Nuclear Medicine Department, King Hussein Cancer Center, Amman, Jordan
| | - A Al-Ibraheem
- Department of Radiation Oncology and Nuclear Medicine Department, King Hussein Cancer Center, Amman, Jordan
| | - Y Numair
- Department of Radiation Oncology and Nuclear Medicine Department, Institute of Nuclear Medicine and Oncology, Lahore, Pakistan
| | - S Abubaker
- Department of Radiation Oncology and Nuclear Medicine Department, Institute of Nuclear Medicine and Oncology, Lahore, Pakistan
| | - C Soydal
- Department of Radiation Oncology and Nuclear Medicine Department, Ankara University School of Medicine, Mamak/Ankara, Turkey
| | - T Kütük
- Department of Radiation Oncology and Nuclear Medicine Department, Ankara University School of Medicine, Mamak/Ankara, Turkey
| | - T A Le
- Department of Radiation Oncology and Nuclear Medicine Department, Cho Ray Hospital, University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - N X Canh
- Department of Radiation Oncology and Nuclear Medicine Department, Cho Ray Hospital, University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - B Q Bieu
- Department of Radiation Oncology and Radiosurgery, Tran Hung Dao Hospital, Hanoi, Vietnam
| | - L N Ha
- Department of Radiation Oncology and Radiosurgery, Tran Hung Dao Hospital, Hanoi, Vietnam
| | - J S A Belderbos
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M P MacManus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - D Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - G G Hanna
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
11
|
Abstract
CLINICAL ISSUE Successful radiotherapy requires precise localization of the tumor and requires high-quality imaging for developing a treatment plan. STANDARD TREATMENT Irradiation of the tumor region, including a safety margin. TREATMENT INNOVATIONS The target volume consists of the gross tumor volume (GTV) containing visible parts of the tumor, the clinical target volume (CTV) covering the GTV plus invisible tumor extensions, and the planning target volume (PTV) to account for uncertainties. The non-GTV parts of the CTV are based on historical patient data. The PTV margins are based on a calculation of possible uncertainties during planning, setup, or treatment. Normal tissue deserves the identical care in contouring, since its tolerance may limit the tumor dose, taking into account the contours of organs at risk. Serial risk organs benefit from defining a planning organ of risk volume (PRV) to better limit the dose delivered to them. DIAGNOSTIC WORK-UP The better the imaging, the more reliable the definition of the GTV and treatment success will be. Multiple imaging sequences are desirable to support the delineation of the tumor. They may result in different CTVs that, depending on their tumor burden, may require different doses. PERFORMANCE The definition of standardized target volumes according to the ICRU reports 50, 62, and 83 forms the basis for an individualized radiation treatment planning according to unified criteria on a high-quality level. ACHIEVEMENTS Radio-oncology is by nature interdisciplinary, the diagnostic radiologist being an indispensable team partner. A regular dialogue between the disciplines is pivotal for target volume definition and treatment success. PRACTICAL RECOMMENDATIONS Imaging for target volume definition requires highest quality imaging, the use of functional imaging methods and close cooperation with a diagnostic radiologist experienced in this field.
Collapse
|
12
|
Tsang Y, Hoskin P, Spezi E, Landau D, Lester J, Miles E, Conibear J. Assessment of contour variability in target volumes and organs at risk in lung cancer radiotherapy. Tech Innov Patient Support Radiat Oncol 2019; 10:8-12. [PMID: 32095541 PMCID: PMC7033767 DOI: 10.1016/j.tipsro.2019.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 12/29/2022] Open
Abstract
It aimed to examine if there’s any significant differences in TV & OAR contouring in lung trials QA. Statistically significant difference in trial protocol compliances of TV & OAR contouring existed. Trial protocol compliances of TV & OARs delineation can be identified through trial QA.
Aims This study aimed to examine whether any significant differences existed in trial protocol compliance in target volumes (TV) and organs at risk (OARs) contouring amongst clinical oncologists specialised in lung cancer radiotherapy. Materials/methods Two lung radiotherapy trials that require all prospective investigators to submit pre-trial outlining quality assurance (QA) benchmark cases were selected. The contours from the benchmark cases were compared against a set of reference contours which were defined by the trial management group (TMG). In order to quantify the degree of variation in TV and OARs contouring, the matching index (MI), Dice coefficient (DICE), Jaccard index (JI), Van‘t Riet Index and geographical miss index (GMI) were calculated. Results A total of 198 structures contoured by 21 clinicians were collected from the outlining benchmark cases. There were 40 clinical target volumes (CTV), 32 spinal cord, 36 oesophagus, 36 heart and 54 lungs volumes included in the study. Analysis of the pre-trial benchmark cases revealed statistically significant differences (p ≤ 0.05) in trial protocol compliances between clinical oncologists’ target volume and organs at risk contours. Our results demonstrated that the lung contours had the highest level of conformity, followed by heart, CTV, spinal cord and oesophagus respectively. Conclusions This study showed that there was a statistically significant difference in trial protocol compliance for lung clinical oncologists’ TV and OARs contouring within the pre-trial QA benchmark cases. Trial protocol compliances of TV and OARs delineation can be identified through assessing outlining QA benchmark cases.
Collapse
Affiliation(s)
- Yatman Tsang
- NIHR Radiotherapy Trials Quality Assurance Group, Mount Vernon Cancer Centre, Rickmansworth Rd, Northwood HA6 2RN, UK
- Corresponding author at: Radiotherapy Department, Mount Vernon Cancer Centre, Northwood, Middlesex HA6 2RN, UK.
| | - Peter Hoskin
- NIHR Radiotherapy Trials Quality Assurance Group, Mount Vernon Cancer Centre, Rickmansworth Rd, Northwood HA6 2RN, UK
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Emiliano Spezi
- Dept. of Medical Physics, Velindre Cancer Centre, Cardiff, UK
- School of Engineering, Cardiff University, UK
| | - David Landau
- Dept. of Clinical Oncology, Guy’s and St. Thomas’ Hospital, London SE1 7EH, UK
| | - Jason Lester
- Dept. of Clinical Oncology, Velindre Cancer Centre, Velindre Road, Cardiff CF14 2TL, UK
| | - Elizabeth Miles
- NIHR Radiotherapy Trials Quality Assurance Group, Mount Vernon Cancer Centre, Rickmansworth Rd, Northwood HA6 2RN, UK
| | - John Conibear
- Dept. of Clinical Oncology, St. Bartholomew’s Hospital, West Smithfield, London EC1A 7BE, UK
| |
Collapse
|
13
|
Mercieca S, Belderbos JSA, van Baardwijk A, Delorme S, van Herk M. The impact of training and professional collaboration on the interobserver variation of lung cancer delineations: a multi-institutional study. Acta Oncol 2019; 58:200-208. [PMID: 30375905 DOI: 10.1080/0284186x.2018.1529422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND To assess the impact of training and interprofessional collaboration on the interobserver variation in the delineation of the lung gross tumor volume (GTVp) and lymph node (GTVln). MATERIAL AND METHODS Eight target volume delineations courses were organized between 2008 and 2013. Specialists and trainees in radiation oncology were asked to delineate the GTVp and GTVln on four representative CT images of a patient diagnosed with lung cancer individually prior each course (baseline), together as group (interprofessional collaboration) and post-training. The mean delineated volume and local standard deviation (local SD) between the contours for each course group were calculated and compared with the expert delineations. RESULTS A total 410 delineations were evaluated. The average local SD was lowest for the interprofessional collaboration (GTVp = 0.194 cm, GTVln = 0.371 cm) followed by the post-training (GTVp = 0.244 cm, GTVln = 0.607 cm) and baseline delineations (GTVp = 0.274 cm, GTVln: 0.718 cm). The mean delineated volume was smallest for the interprofessional (GTVp = 4.93 cm3, GTVln = 4.34 cm3) followed by the post-training (GTVp = 5.68 cm3, GTVln = 5.47 cm3) and baseline delineations (GTVp = 6.65 cm3, GTVln = 6.93 cm3). All delineations were larger than the expert for both GTVp and GTVln (p < .001). CONCLUSION Our findings indicate that image interpretational differences can lead to large interobserver variation particularly when delineating the GTVln. Interprofessional collaboration was found to have the greatest impact on reducing interobserver variation in the delineation of the GTVln. This highlights the need to develop a clinical workflow so as to ensure that difficult cases are reviewed routinely by a second radiation oncologist or radiologist so as to minimize the risk of geographical tumor miss and unnecessary irradiation to normal tissue.
Collapse
Affiliation(s)
- Susan Mercieca
- Faculty of Health Science, University of Malta. Msida, Malta
- Academisch Medisch Centrum Geneeskunde Amsterdam, Noord-Holland, The Netherlands
| | - José S. A. Belderbos
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Angela van Baardwijk
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stefan Delorme
- German Cancer Research Center (Dkfz), Department of Radiology, Heidelberg, Germany
| | - Marcel van Herk
- Manchester Academic Health Centre, University of Manchester, The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
14
|
Konert T, van de Kamer JB, Sonke JJ, Vogel WV. The developing role of FDG PET imaging for prognostication and radiotherapy target volume delineation in non-small cell lung cancer. J Thorac Dis 2018; 10:S2508-S2521. [PMID: 30206495 DOI: 10.21037/jtd.2018.07.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Advancements in functional imaging technology have allowed new possibilities in contouring of target volumes, monitoring therapy, and predicting treatment outcome in non-small cell lung cancer (NSCLC). Consequently, the role of 18F-fluorodeoxyglucose positron emission tomography (FDG PET) has expanded in the last decades from a stand-alone diagnostic tool to a versatile instrument integrated with computed tomography (CT), with a prominent role in lung cancer radiotherapy. This review outlines the most recent literature on developments in FDG PET imaging for prognostication and radiotherapy target volume delineation (TVD) in NSCLC. We also describe the challenges facing the clinical implementation of these developments and present new ideas for future research.
Collapse
Affiliation(s)
- Tom Konert
- Nuclear Medicine Department, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jeroen B van de Kamer
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wouter V Vogel
- Nuclear Medicine Department, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
15
|
McDermott RL, Armstrong JG, Thirion P, Dunne M, Finn M, Small C, Byrne M, O'Shea C, O'Sullivan L, Shannon A, Kelly E, Hacking DJ. Cancer Trials Ireland (ICORG) 06-34: A multi-centre clinical trial using three-dimensional conformal radiation therapy to reduce the toxicity of palliative radiation for lung cancer. Radiother Oncol 2018; 127:253-258. [PMID: 29548561 DOI: 10.1016/j.radonc.2018.02.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 02/13/2018] [Accepted: 02/26/2018] [Indexed: 12/25/2022]
Abstract
TITLE Cancer Trials Ireland (ICORG) 06-34: A multi-centre clinical trial using three-dimensional conformal radiation therapy to reduce the toxicity of palliative radiation for lung cancer. NCT01176487. BACKGROUND & PURPOSE Trials of radiation therapy for the palliation of intra-thoracic symptoms from locally advanced non-small cell lung cancer (NSCLC) have concentrated on optimising fractionation and dose schedules. In these trials, the rates of oesophagitis induced by this "palliative" therapy have been unacceptably high. In contrast, this non-randomised, single-arm trial was designed to assess if more technically advanced treatment techniques would result in equivalent symptom relief and reduce the side-effect of symptomatic oesophagitis. MATERIALS & METHODS Thirty-five evaluable patients with symptomatic locally advanced or metastatic NSCLC were treated using a three-dimensional conformal technique (3-DCRT) and standardised dose regimens of 39 Gy in 13 fractions, 20 Gy in 5 fractions or 17 Gy in 2 fractions. Treatment plans sought to minimise oesophageal dose. Oesophagitis was recorded during treatment, at two weeks, one month and three months following radiation therapy and 3-6 monthly thereafter. Mean dose to the irradiated oesophagus was calculated for all treatment plans. RESULTS Five patients (14%) had experienced grade 2 oesophagitis or dysphagia or both during treatment and 2 other patients had these side effects at the 2-week follow-up. At follow-up of one month after therapy, there was no grade two or higher oesophagitis or dysphagia reported. 22 patients were eligible for assessment of late toxicity. Five of these patients reported oesophagitis or dysphagia (one had grade 3 dysphagia, two had grade 2 oesophagitis, one of whom also had grade 2 dysphagia). Quality of Life (QoL) data at baseline and at 1-month follow up were available for 20 patients. At 1-month post radiation therapy, these patients had slightly less trouble taking a short walk, less shortness of breath, did not feel as weak, had better appetite and generally had a better overall quality of life than they did at baseline. They did report being slightly more tired. CONCLUSIONS This trial is the first of its kind showing that 3-DCRT provides patients with lower rates of oesophageal toxicity whilst yielding acceptable rates of symptom control. (Sponsored by Cancer Trials Ireland (ICORG) Study number 06-34, the Friends of St. Luke's and the St. Luke's Institute of Cancer Research.).
Collapse
Affiliation(s)
| | | | | | - Mary Dunne
- St Luke's Hospital, Rathgar, Dublin, Ireland
| | - Marie Finn
- St Luke's Hospital, Rathgar, Dublin, Ireland
| | | | - Mary Byrne
- University Hospital Galway, Galway, Ireland
| | | | | | | | - Emma Kelly
- UPMC Whitfield Cancer Centre, Waterford, Ireland
| | | |
Collapse
|
16
|
Bissonnette JP, Yap ML, Clarke K, Shessel A, Higgins J, Vines D, Atenafu EG, Becker N, Leavens C, Bezjak A, Jaffray DA, Sun A. Serial 4DCT/4DPET imaging to predict and monitor response for locally-advanced non-small cell lung cancer chemo-radiotherapy. Radiother Oncol 2018; 126:347-354. [DOI: 10.1016/j.radonc.2017.11.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/07/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
|
17
|
Chang ATY, Tan LT, Duke S, Ng WT. Challenges for Quality Assurance of Target Volume Delineation in Clinical Trials. Front Oncol 2017; 7:221. [PMID: 28993798 PMCID: PMC5622143 DOI: 10.3389/fonc.2017.00221] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/01/2017] [Indexed: 12/30/2022] Open
Abstract
In recent years, new radiotherapy techniques have emerged that aim to improve treatment outcome and reduce toxicity. The standard method of evaluating such techniques is to conduct large scale multicenter clinical trials, often across continents. A major challenge for such trials is quality assurance to ensure consistency of treatment across all participating centers. Analyses from previous studies have shown that poor compliance and protocol violation have a significant adverse effect on treatment outcomes. The results of the clinical trials may, therefore, be confounded by poor quality radiotherapy. Target volume delineation (TVD) is one of the most critical steps in the radiotherapy process. Many studies have shown large inter-observer variations in contouring, both within and outside of clinical trials. High precision techniques, such as intensity-modulated radiotherapy, image-guided brachytherapy, and stereotactic radiotherapy have steep dose gradients, and errors in contouring may lead to inadequate dose to the tumor and consequently, reduce the chance of cure. Similarly, variation in organ at risk delineation will make it difficult to evaluate dose response for toxicity. This article reviews the literature on TVD variability and its impact on dosimetry and clinical outcomes. The implications for quality assurance in clinical trials are discussed.
Collapse
Affiliation(s)
- Amy Tien Yee Chang
- Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, Hong Kong.,Department of Clinical Oncology, University of Hong Kong, Hong Kong
| | - Li Tee Tan
- Department of Oncology, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Simon Duke
- Department of Oncology, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Wai-Tong Ng
- Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, Hong Kong
| |
Collapse
|