1
|
Schytte T, Knap MM, Kristiansen C, Appelt AL, Khalil A, Peucelle C, Lutz CM, Møller DS, Sande EPS, Sundby F, Persson G, Schmidt H, Land LH, Rogg L, Pøhl M, Lund MD, Nielsen M, Levin N, Hansen O, Thing RS, Borissova S, Halvorsen T, Nielsen TB, Hansen TS, Haakensen VD, Ottosson W, Brink C, Hoffmann L. Toxicity Within 6 Months of Heterogeneous Fluorodeoxyglucose-Guided Radiotherapy Dose Escalation for Locally Advanced Non-Small Cell Lung Cancer in the Scandinavian Randomized Phase III NARLAL2 Trial. J Clin Oncol 2025:JCO2401386. [PMID: 40249893 DOI: 10.1200/jco-24-01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/26/2024] [Accepted: 03/05/2025] [Indexed: 04/20/2025] Open
Abstract
PURPOSE Radiation dose escalation for locally advanced non-small cell lung cancer (LA-NSCLC) has been challenged by toxicity concerns. The Scandinavian phase III multicenter dose-escalation trial NARLAL2 (ClinicalTrials.gov identifier: NCT02354274) used a novel approach to dose escalation: heterogeneous escalation driven by the fluorodeoxyglucose positron emission tomography-avid region, with strict normal tissue dose constraints. We report early toxicity within 6 months of random assignment. MATERIALS AND METHODS Patients were recruited from seven institutions in Scandinavia. Eligibility criteria included performance status 0-1, NSCLC stage IIB-IIIB, and feasibility of delivering 66 Gy/33 fraction treatment plan. Patients were randomly assigned between standard (66 Gy) and heterogeneously dose-escalated radiotherapy. Two treatment plans were made for each patient before random assignment with matched mean lung dose and V20Gy, and strict dose constraints for all normal tissues. Toxicity was evaluated weekly during radiotherapy, and every 3 months after random assignment. Concurrent chemotherapy was cisplatin/carboplatin and Navelbine. RESULTS Between January 2015 and March 2023, 350 patients were randomly assigned. The as-treated analysis included 178 patients in the standard and 172 in dose-escalated (mean tumor dose 88 Gy) arms. Median gross tumor and planning target volumes were, respectively, 54 cm3 and 321 cm3 (standard arm) and 61 cm3 and 339 cm3 (escalated arm). No difference in early toxicity between the two arms was observed. Grade 2 esophagitis during radiotherapy was 28.1% and 25.6%, grade 3 esophagitis 7.3% and 4.1%, grade 2 pneumonitis 15.7% and 20.3%, and grade 3 pneumonitis 3.9% and 5.8% in standard and escalated arms, respectively. For both arms, the maximum grade of early toxicity aggregated over all toxicities was 35% and 1% for grades ≥3 and 5, respectively. Four patients died from potential treatment-related toxicity. CONCLUSION Heterogeneous dose escalation did not increase early toxicity despite delivery of 88 Gy mean dose to the primary tumor, demonstrating this as an attractive strategy for LA-NSCLC radiotherapy dose escalation.
Collapse
Affiliation(s)
- Tine Schytte
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN (Open Patient Data Explorative Network), Odense University Hospital, Odense, Denmark
| | - Marianne M Knap
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Charlotte Kristiansen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Ane L Appelt
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Azza Khalil
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Cecile Peucelle
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christina M Lutz
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Ditte S Møller
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Erlend P S Sande
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
| | - Filipa Sundby
- Department of Oncology, Herlev and Gentofte University Hospital, Herlev, Denmark
| | - Gitte Persson
- Department of Oncology, Herlev and Gentofte University Hospital, Herlev, Denmark
| | - Hjørdis Schmidt
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Lotte Holm Land
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lotte Rogg
- Department of Oncology and Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Mette Pøhl
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mikkel D Lund
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Morten Nielsen
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Nina Levin
- Clinic of Oncology, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Olfred Hansen
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Rune S Thing
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Svetlana Borissova
- Department of Oncology, Herlev and Gentofte University Hospital, Herlev, Denmark
| | - Tarje Halvorsen
- Clinic of Oncology, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tine B Nielsen
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Torben S Hansen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Vilde Drageset Haakensen
- Department of Oncology and Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Wiviann Ottosson
- Department of Oncology, Herlev and Gentofte University Hospital, Herlev, Denmark
| | - Carsten Brink
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lone Hoffmann
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Richlitzki C, Manapov F, Holzgreve A, Rabe M, Werner RA, Belka C, Unterrainer M, Eze C. Advances of PET/CT in Target Delineation of Lung Cancer Before Radiation Therapy. Semin Nucl Med 2025; 55:190-201. [PMID: 40064578 DOI: 10.1053/j.semnuclmed.2025.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
In the clinical management of lung cancer, radiotherapy remains a cornerstone of multimodal treatment strategies, often used alongside surgery or in combination with systemic therapies such as chemotherapy, tyrosine kinase inhibitors, and immune checkpoint inhibitors. While conventional imaging modalities like computed tomography (CT) and magnetic resonance imaging (MRI) continue to play a central role in staging, response assessment, and radiotherapy planning, advanced imaging techniques, particularly [18F]FDG PET/CT, are being increasingly integrated into routine clinical practice. These advanced techniques address the limitations of standard imaging by providing insight into molecular and metabolic tumor characteristics, enabling precise tumor visualization, accurate target volume delineation, and early treatment response assessment. This review examines the role of radiotherapy in the multidisciplinary management of lung cancer, detailing current concepts of morphological and functional imaging for staging and treatment planning. It also highlights the growing importance of PET-based radiotherapy planning, emphasizing its contributions to target volume definition and predictive value for treatment outcomes. Recent methodological advances, including the integration of artificial intelligence (AI), radiomics, technical innovations, and novel PET ligands, are discussed, highlighting their potential to improve the precision, efficacy, and personalization of lung cancer radiotherapy planning.
Collapse
Affiliation(s)
- Cedric Richlitzki
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Farkhad Manapov
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; Ahmanson Translational Theranostics Division, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Moritz Rabe
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Rudolf Alexander Werner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; The Russell H Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School of Medicine, Baltimore, MD
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany; Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany; Bavarian Cancer Research Center, Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; Die Radiologie, Munich, Germany
| | - Chukwuka Eze
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
3
|
Zeng H, E X, Lv M, Zeng S, Feng Y, Shen W, Guan W, Zhang Y, Zhao R, Yu J. Deep learning-based synthetic CT for dosimetric monitoring of combined conventional radiotherapy and lattice boost in large lung tumors. Radiat Oncol 2025; 20:12. [PMID: 39844209 PMCID: PMC11753050 DOI: 10.1186/s13014-024-02568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025] Open
Abstract
PURPOSE Conventional radiotherapy (CRT) has limited local control and poses a high risk of severe toxicity in large lung tumors. This study aimed to develop an integrated treatment plan that combines CRT with lattice boost radiotherapy (LRT) and monitors its dosimetric characteristics. METHODS This study employed cone-beam computed tomography from 115 lung cancer patients to develop a U-Net + + deep learning model for generating synthetic CT (sCT). The clinical feasibility of sCT was thoroughly evaluated in terms of image clarity, Hounsfield Unit (HU) consistency, and computational accuracy. For large lung tumors, accumulated doses to the gross tumor volume (GTV) and organs at risk (OARs) during 20 fractions of CRT were precisely monitored using matrices derived from the deformable registration of sCT and planning CT (pCT). Additionally, for patients with minimal tumor shrinkage during CRT, an sCT-based adaptive LRT boost plan was introduced, with its dosimetric properties, treatment safety in high dose regions, and delivery accuracy quantitatively assessed. RESULTS The image quality and HU consistency of sCT improved significantly, with dose deviations ranging from 0.15% to 1.25%. These results indicated that sCT is feasible for inter-fraction dose monitoring and adaptive planning. After rigid and hybrid deformable registration of sCT and pCT, the mean distance-to-agreement was 0.80 ± 0.18 mm, and the mean Dice similarity coefficient was 0.97 ± 0.01. Monitoring dose accumulation over 20 CRT fractions showed an increase in high-dose regions of the GTV (P < 0.05) and a reduction in low-dose regions (P < 0.05). Dosimetric parameters of all OARs were significantly higher than those in the original treatment plan (P < 0.01). The sCT based adaptive LRT boost plan, when combined with CRT, significantly reduced the dose to OARs compared to CRT alone (P < 0.05). In LRT plan, high-dose regions for the GTV and D95% exhibited displacements greater than 5 mm from the tumor boundary in 19 randomly scanned sCT sequences under free breathing conditions. Validation of dose delivery using TLD phantom measurements showed that more than half of the dose points in the sCT based LRT plan had deviations below 2%, with a maximum deviation of 5.89%. CONCLUSIONS The sCT generated by the U-Net + + model enhanced the accuracy of monitoring the actual accumulated dose, thereby facilitating the evaluation of therapeutic efficacy and toxicity. Additionally, the sCT-based LRT boost plan, combined with CRT, further minimized the dose delivered to OARs while ensuring safe and precise treatment delivery.
Collapse
Affiliation(s)
- Hongwei Zeng
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Xiangyu E
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Minghe Lv
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Su Zeng
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Yue Feng
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Wenhao Shen
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Wenhui Guan
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Yang Zhang
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Ruping Zhao
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Road, Pudong New Area, Shanghai, 201203, China.
| | - Jingping Yu
- Department of Radiotherapy, Changzhou Cancer Hospital, Honghe Road, Xinbei Area, Changzhou, 213032, China.
| |
Collapse
|
4
|
Thomsen SN, Møller DS, Knap MM, Khalil AA, Shcytte T, Hoffmann L. Daily CBCT-based dose calculations for enhancing the safety of dose-escalation in lung cancer radiotherapy. Radiother Oncol 2024; 200:110506. [PMID: 39197502 DOI: 10.1016/j.radonc.2024.110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
PURPOSE Dose-escalation in lung cancer comes with a high risk of severe toxicity. This study aimed to calculate the delivered dose in a Scandinavian phase-III dose-escalation trial. METHODS The delivered dose was evaluated for 21 locally-advanced non-small cell lung cancer (LA-NSCLC) patients treated as part of the NARLAL2 dose-escalation trial. The patients were randomized between standard and escalated heterogeneous dose-delivery. Both treatment plans were created and approved before randomization. Daily cone-beam CT (CBCT) for patient positioning, and adaptive radiotherapy were mandatory. Standard and escalated plans, including adaptive re-plans, were recalculated on each daily CBCT and accumulated on the planning CT for each patient. Dose to the clinical target volume (CTV), organs at risk (OAR), and the effects of plan adaptions were evaluated for the accumulated dose and on each treated fraction scaled to full treatment. RESULTS For the standard treatment, plan adaptations reduced the number of patients with CTV-T underdosage from six to one, and the total number of fractions with CTV-T underdosage from 161 to 56; while for the escalated treatment, the number of patients was reduced from five to zero and number of fractions from 81 to 11. For dose-escalation, three patients had fractions exceeding trial constraints for heart, bronchi, or esophagus, and one had an accumulated heart dose above the constraints. CONCLUSION Dose-escalation for LA-NSCLC patients, using daily image guidance and adaptive radiotherapy, is dosimetrically safe for the majority of patients. Dose calculation on daily CBCTs is an efficient tool to monitor target coverage and OAR doses.
Collapse
Affiliation(s)
- S N Thomsen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - D S Møller
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - M M Knap
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - A A Khalil
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - T Shcytte
- Department of Oncology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - L Hoffmann
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Hessels AC, Visser S, Both S, Korevaar EW, Langendijk JA, Wijsman R. A planning study of proton therapy dose escalation for non-small cell lung cancer. Phys Imaging Radiat Oncol 2024; 31:100616. [PMID: 39157295 PMCID: PMC11327929 DOI: 10.1016/j.phro.2024.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
In non-small-cell lung cancer (NSCLC), improving local control through radiotherapy dose escalation might improve survival. However, a photon-based RCT showed increased organ at risk dose exposure and worse overall survival in the dose escalation arm. In this study, intensity-modulated proton therapy plans with dose escalation to the primary tumour were created for 20 NSCLC patients. The mediastinal envelope was delineated to spare structures around the heart. It was possible to increase primary tumour dose up to 74.0 Gy without a significant increase in organ at risk doses and predicted toxicity.
Collapse
Affiliation(s)
- Arno C Hessels
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sabine Visser
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erik W Korevaar
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robin Wijsman
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Bartolomeo V, Cortiula F, Hendriks LEL, De Ruysscher D, Filippi AR. A Glimpse Into the Future for Unresectable Stage III Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2024; 118:1455-1460. [PMID: 38159097 DOI: 10.1016/j.ijrobp.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Affiliation(s)
- Valentina Bartolomeo
- Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Department of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Francesco Cortiula
- Department of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands; Department of Medical Oncology, Udine University Hospital, Udine, Italy
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Andrea R Filippi
- Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| |
Collapse
|
7
|
Knap MM, Khan S, Khalil AA, Møller DS, Hoffmann L. Outcome of conventional radiotherapy in small centrally located tumours or lymph nodes: minimal toxicity, remarkable survival but challenging loco-regional control. Acta Oncol 2023; 62:1433-1439. [PMID: 37707506 DOI: 10.1080/0284186x.2023.2257872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND In peripheral lung tumours, stereotactic body radiotherapy (SBRT) is superior to conventional RT. SBRT has also shown high loco-regional control (LC) in centrally located tumours, but there is a high risk of severe toxicity. The STRICTSTARLung trial (NCT05354596) examines if risk-adapted SBRT for central tumours is feasible. In this study, we examined overall survival (OS), Disease-free survival (DSF), LC, and toxicity in patients with central tumours that could have been candidates for SBRT but received conventional RT. MATERIAL AND METHODS Retrospectively, we evaluated 49 lung cancer patients that between 2008 and 2021 received RT (60-70Gy in 2 Gy fractions) for a solitary tumour or lymph node with a diameter <5cm located <2cm from the bronchial tree, oesophagus, aorta or heart. All tumours were pathologically verified; 30 were primary lung tumours (T1b-T4) and 19 were solitary lymph nodes (T0N1-N2). Chemotherapy was administered as concomitant (29) or sequential (4). OS and LC were analysed using Kaplan Meier. Cox proportional hazards model for OS and disease-free survival (DFS) was performed including tumour volume, histology, sex, T- vs N-site and chemotherapy. Toxicity was scored. RESULTS In 42 patients, the tumour was located <1 cm to mediastinum. Median follow-up time was 44 months (range: 7-123). The median OS was 51 months. OS at 1-, 3- and 5-year was 88% (SE:5), 59% (SE:7) and 50% (SE:8). Loco-regional recurrences occurred in 16 patients resulting in 1-, and 3-year LC rates of 77% (SE:6) and 64% (SE:8). The majority occurred within 3 years after RT. Only stage showed significant impact on OS and DFS. No patients experienced grade 4-5 toxicity. Seven patients developed grade 3 toxicity (5 oesophageal stenosis, 2 pneumonitis). CONCLUSION Conventional RT for patients with small central lung tumours or solitary lymph nodes is feasible. Median OS was 51 months, and toxicity was low with no grade 4-5 events.
Collapse
Affiliation(s)
- M M Knap
- Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark
| | - S Khan
- Department of Respiratory Diseases and Allergology, Aarhus University Hospital, Aarhus N, Denmark
| | - A A Khalil
- Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - D S Møller
- Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - L Hoffmann
- Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
8
|
Krogh SL, Brink C, Lorenzen EL, Samsøe E, Vogelius IR, Zukauskaite R, Vrou Offersen B, Eriksen JG, Hansen O, Johansen J, Olloni A, Ruhlmann CH, Hoffmann L, Nissen HD, Skovmos Nielsen M, Andersen K, Grau C, Hansen CR. A national repository of complete radiotherapy plans: design, Results, and experiences. Acta Oncol 2023; 62:1161-1168. [PMID: 37850659 DOI: 10.1080/0284186x.2023.2270143] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Previously, many radiotherapy (RT) trials were based on a few selected dose measures. Many research questions, however, rely on access to the complete dose information. To support such access, a national RT plan database was created. The system focuses on data security, ease of use, and re-use of data. This article reports on the development and structure, and the functionality and experience of this national database. METHODS AND MATERIALS A system based on the DICOM-RT standard, DcmCollab, was implemented with direct connections to all Danish RT centres. Data is segregated into any number of collaboration projects. User access to the system is provided through a web interface. The database has a finely defined access permission model to support legal requirements. RESULTS Currently, data for more than 14,000 patients have been submitted to the system, and more than 50 research projects are registered. The system is used for data collection, trial quality assurance, and audit data set generation.Users reported that the process of submitting data, waiting for it to be processed, and then manually attaching it to a project was resource intensive. This was accommodated with the introduction of triggering features, eliminating much of the need for users to manage data manually. Many other features, including structure name mapping, RT plan viewer, and the Audit Tool were developed based on user input. CONCLUSION The DcmCollab system has provided an efficient means to collect and access complete datasets for multi-centre RT research. This stands in contrast with previous methods of collecting RT data in multi-centre settings, where only singular data points were manually reported. To accommodate the evolving legal environment, DcmCollab has been defined as a 'data processor', meaning that it is a tool for other research projects to use rather than a research project in and of itself.
Collapse
Affiliation(s)
- Simon Long Krogh
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Carsten Brink
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ebbe Laugaard Lorenzen
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Eva Samsøe
- Department of Oncology, Radiotherapy, Zealand University Hospital, Naestved, Denmark
| | | | - Ruta Zukauskaite
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Birgitte Vrou Offersen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Danish Center for Particle Therapy, Aarhus, Denmark
| | - Jesper Grau Eriksen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Olfred Hansen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Jørgen Johansen
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Agon Olloni
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | | | - Lone Hoffmann
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Dahl Nissen
- Department of Oncology, University Hospital of Southern Denmark, Vejle, Denmark
| | | | - Karen Andersen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Cai Grau
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Rønn Hansen
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Danish Center for Particle Therapy, Aarhus, Denmark
| |
Collapse
|
9
|
Gates EDH, Hippe DS, Vesselle HJ, Zeng J, Bowen SR. Independent association of metabolic tumor response on FDG-PET with pulmonary toxicity following risk-adaptive chemoradiation for unresectable non-small cell lung cancer: Inherent radiosensitivity or immune response? Radiother Oncol 2023; 185:109720. [PMID: 37244360 PMCID: PMC10525017 DOI: 10.1016/j.radonc.2023.109720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND In the context of a phase II trial of risk-adaptive chemoradiation, we evaluated whether tumor metabolic response could serve as a correlate of treatment sensitivity and toxicity. METHODS Forty-five patients with AJCCv7 stage IIB-IIIB NSCLC enrolled on the FLARE-RT phase II trial (NCT02773238). [18F]fluorodeoxyglucose (FDG) PET-CT images were acquired prior to treatment and after 24 Gy during week 3. Patients with unfavorable on-treatment tumor response received concomitant boosts to 74 Gy total over 30 fractions rather than standard 60 Gy. Metabolic tumor volume and mean standardized uptake value (SUVmean) were calculated semi-automatically. Risk factors of pulmonary toxicity included concurrent chemotherapy regimen, adjuvant anti-PDL1 immunotherapy, and lung dosimetry. Incidence of CTCAE v4 grade 2+ pneumonitis was analyzed using the Fine-Gray method with competing risks of metastasis or death. Peripheral germline DNA microarray sequencing measured predefined candidate genes from distinct pathways: 96 DNA repair, 53 immunology, 38 oncology, 27 lung biology. RESULTS Twenty-four patients received proton therapy, 23 received ICI, 26 received carboplatin-paclitaxel, and 17 pneumonitis events were observed. Pneumonitis risk was significantly higher for patients with COPD (HR 3.78 [1.48, 9.60], p = 0.005), those treated with immunotherapy (HR 2.82 [1.03, 7.71], p = 0.043) but not with carboplatin-paclitaxel (HR 1.98 [0.71, 5.54], p = 0.19). Pneumonitis rates were similar among selected patients receiving 74 Gy radiation vs 60 Gy (p = 0.33), proton therapy vs photon (p = 0.60), or with higher lung dosimetric V20 (p = 0.30). Patients in the upper quartile decrease in SUVmean (>39.7%) were at greater risk for pneumonitis (HR 4.00 [1.54, 10.44], p = 0.005) and remained significant in multivariable analysis (HR 3.34 [1.23, 9.10], p = 0.018). Germline DNA gene alterations in immunology pathways were most frequently associated with pneumonitis. CONCLUSION Tumor metabolic response as measured by mean SUV is associated with increased pneumonitis risk in a clinical trial cohort of NSCLC patients independent of treatment factors. This may be partially attributed to patient-specific differences in immunogenicity.
Collapse
Affiliation(s)
- Evan D H Gates
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
| | - Daniel S Hippe
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Hubert J Vesselle
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Jing Zeng
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
| | - Stephen R Bowen
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States; Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
10
|
Hoppen L, Sarria GR, Kwok CS, Boda-Heggemann J, Buergy D, Ehmann M, Giordano FA, Fleckenstein J. Dosimetric benefits of adaptive radiation therapy for patients with stage III non-small cell lung cancer. Radiat Oncol 2023; 18:34. [PMID: 36814271 PMCID: PMC9945670 DOI: 10.1186/s13014-023-02222-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Daily adaptive radiation therapy (ART) of patients with non-small cell lung cancer (NSCLC) lowers organs at risk exposure while maintaining the planning target volume (PTV) coverage. Thus, ART allows an isotoxic approach with increased doses to the PTV that could improve local tumor control. Herein we evaluate daily online ART strategies regarding their impact on relevant dose-volume metrics. METHODS Daily cone-beam CTs (1 × n = 28, 1 × n = 29, 11 × n = 30) of 13 stage III NSCLC patients were converted into synthetic CTs (sCTs). Treatment plans (TPs) were created retrospectively on the first-fraction sCTs (sCT1) and subsequently transferred unaltered to the sCTs of the remaining fractions of each patient (sCT2-n) (IGRT scenario). Two additional TPs were generated on sCT2-n: one minimizing the lung-dose while preserving the D95%(PTV) (isoeffective scenario), the other escalating the D95%(PTV) with a constant V20Gy(lungipsilateral) (isotoxic scenario). RESULTS Compared to the original TPs predicted dose, the median D95%(PTV) in the IGRT scenario decreased by 1.6 Gy ± 4.2 Gy while the V20Gy(lungipsilateral) increased in median by 1.1% ± 4.4%. The isoeffective scenario preserved the PTV coverage and reduced the median V20Gy(lungipsilateral) by 3.1% ± 3.6%. Furthermore, the median V5%(heart) decreased by 2.9% ± 6.4%. With an isotoxic prescription, a median dose-escalation to the gross target volume of 10.0 Gy ± 8.1 Gy without increasing the V20Gy(lungipsilateral) and V5%(heart) was feasible. CONCLUSIONS We demonstrated that even without reducing safety margins, ART can reduce lung-doses, while still reaching adequate target coverage or escalate target doses without increasing ipsilateral lung exposure. Clinical benefits by means of toxicity and local control of both strategies should be evaluated in prospective clinical trials.
Collapse
Affiliation(s)
- Lea Hoppen
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Gustavo R. Sarria
- grid.10388.320000 0001 2240 3300Department of Radiation Oncology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Chung S. Kwok
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Judit Boda-Heggemann
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Daniel Buergy
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Michael Ehmann
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Frank A. Giordano
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Jens Fleckenstein
- grid.7700.00000 0001 2190 4373Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
11
|
Shamshad M, Møller DS, Mortensen HR, Ehmsen ML, Jensen MF, Hoffmann L. Bone versus soft-tissue setup in proton therapy for patients with oesophageal cancer. Acta Oncol 2022; 61:994-1003. [PMID: 35775236 DOI: 10.1080/0284186x.2022.2091949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND The aim of this study was to investigate the effect of patient positioning based on either bone or soft-tissue matching for PT in oesophageal cancer and its impact on plan adaptation. MATERIALS AND METHODS Two retrospective patient cohorts treated with radiotherapy were included in the study. Cohort A consisted of 26 consecutive patients with a planning 4DCT scan (CT1) and a surveillance 4DCT scan (CT2) at fraction ten. Cohort B consisted of 17 patients selected based on large anatomical changes identified during treatment resulting in a rescan (CT2). Mean dose to the iCTV (sum of the CTVs in all respiratory phases) was 50.4 Gy (RBE) in 28 fractions or 41.4 Gy (RBE) in 23 fractions. A nominal pencil beam scanning plan was created using two posterior beams and robust optimization (5 mm setup, 3.5% range). For each patient, two rigid registrations were made between average (avg) CT1 and CT2: a match on the vertebral column (bone match) and a match on the iCTV (soft-tissue match). Robustness towards setup (5 mm) and range (3.5%) errors was evaluated at CT2. Robustness towards respiration was evaluated by recalculation of the plan on all phases of the CT2 scan. Dose coverage <96% would trigger adaptation. The statistical significance (p-value <0.05) between dose coverage for the two registration methods was assessed using the Wilcoxon signed rank test. RESULTS All plans fulfilled V95%iCTV>99% for the nominal plan and V95%iCTV>97% for all respiratory phases and robustness scenarios at CT1. In two (8%) and three (18%) patients, V95%iCTV<96% on CT2 for Cohort A and B, respectively when bone match was used. For soft-tissue match, V95%iCTV >96% for all patients. V95%iCTV was significantly higher (p-value = 0.0001) for soft-tissue match than bone match. CONCLUSION Anatomical changes during the treatment course led to target dose deterioration and a need for plan adaptation when using a bone match.
Collapse
Affiliation(s)
- Muhammad Shamshad
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Ditte Sloth Møller
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | | | | | | | - Lone Hoffmann
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Hoffmann L, Persson G, Nygård L, Nielsen T, Borrisova S, Gaard-Petersen F, Josipovic M, Khalil A, Kjeldsen R, Knap M, Kristiansen C, Møller D, Ottosson W, Sand H, Thing R, Pøhl M, Schytte T. Thorough design and pre-trial quality assurance (QA) decrease dosimetric impact of delineation and dose planning variability in the STRICTLUNG and STARLUNG trials for stereotactic body radiotherapy (SBRT) of central and ultra-central lung tumours. Radiother Oncol 2022; 171:53-61. [DOI: 10.1016/j.radonc.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
|
13
|
Møller DS, Lutz CM, Khalil AA, Alber M, Holt MI, Kandi M, Schmidt HH, Tvilum M, Appelt A, Knap MM, Hoffmann L. Survival benefits for non-small cell lung cancer patients treated with adaptive radiotherapy. Radiother Oncol 2022; 168:234-240. [PMID: 35121030 DOI: 10.1016/j.radonc.2022.01.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/11/2021] [Accepted: 01/27/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Tumor match and adaptive radiotherapy based on on-treatment imaging increases the precision of RT. This allows a reduction of treatment volume and, consequently, of the dose to organs at risk. We investigate the clinical benefits of tumor match and adaptive radiotherapy for a cohort of non-small cell lung cancer patients (NSCLC). METHODS In 2013, tumor match and adaptive radiotherapy based on daily cone-beam CT scans was introduced to ensure adaption of the radiotherapy treatment plan for all patients with significant anatomical changes during radiotherapy. Before 2013, the daily cone-beam CT scans were matched on the vertebra and anatomical changes were not evaluated systematically. To estimate the effect of tumor match and adaptive radiotherapy, 439 consecutive NSCLC patients treated with definitive chemo-radiotherapy (50-66 Gy/25-33 fractions, 2010-2018) were investigated retrospectively. They were split in two groups, pre-ART (before tumor match and adaptive radiotherapy, 184 patients), and ART (after tumor match and adaptive radiotherapy, 255 patients) and compared with respect to clinical, treatment-specific and dosimetric variables (χ2 tests, Mann Whitney U tests), progression, survival and radiation pneumonits (CTCAEv3). Progression-free and overall survival as well as radiation pneumonitis were compared with log-rank tests. Hazard ratios were estimated from Cox proportional hazard regression. RESULTS No significant differences in stage (p = 0.36), histology (p = 0.35), PS (p = 0.12) and GTV volumes (p = 0.24) were observed. Concomitant chemotherapy was administered more frequently in the ART group (78%) compared to preART (64%), p < 0.001. Median[range] PTV volumes decreased from 456 [71;1262] cm3 (preART) to 270 [31;1166] cm3 (ART), p < 0.001, thereby significantly reducing mean doses to lungs (median, preART 16.4 [1.9;24.7] Gy, ART 12.1 [1.7;19.4] Gy, p < 0.001) and heart (median, preART 8.0 [0.1;32.1] Gy, ART 4.4 [0.1;33.9] Gy, p < 0.001). The incidence of RP at nine months decreased significantly with ART (50% to 20% for symptomatic RP (≥G2), 21% to 7% for severe RP (≥G3), 6% to 0.4% for lethal RP (G5), all p < 0.001). The two-year progression free survival increased from 22% (preART) to 30% (ART), while the overall survival increased from 43% (preART) to 56% (ART). The median overall survival time increased from 20 (preART) to 28 months (ART). CONCLUSION Tumor match and adaptive radiotherapy significantly decreased radiation pneumonitis, while maintaining loco-regional control. Further, we observed a significantly improved progression-free and overall survival.
Collapse
Affiliation(s)
| | | | | | - Markus Alber
- Department of Radiation Oncology, Heidelberg University Hospital, Germany; Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Germany
| | | | - Maria Kandi
- Department of Oncology, Aarhus University Hospital, Denmark
| | | | - Marie Tvilum
- Department of Oncology, Aarhus University Hospital, Denmark
| | - Ane Appelt
- Leeds Institute of Medical Research at St James's, University of Leeds, United Kingdom; Leeds Cancer Centre, St James's University Hospital, Leeds, United Kingdom
| | | | - Lone Hoffmann
- Department of Oncology, Aarhus University Hospital, Denmark
| |
Collapse
|
14
|
Hoffmann L, Knap MM, Alber M, Møller DS. Optimal beam angle selection and knowledge-based planning significantly reduces radiotherapy dose to organs at risk for lung cancer patients. Acta Oncol 2021; 60:293-299. [PMID: 33306422 DOI: 10.1080/0284186x.2020.1856409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Lung cancer patients struggle with high toxicity rates. This study investigates if IMRT plans with individually set beam angles or uni-lateral VMAT plans results in dose reduction to OARs. We investigate if introduction of a RapidPlan model leads to reduced dose to OARs. Finally, the model is validated prospectively. MATERIAL AND METHODS Seventy-four consecutive lung cancer patients treated with IMRT were included. For all patients, new IMRT plans were made by an experienced dose planner re-tuning beam angles aiming for minimized dose to the lungs and heart. Additionally, VMAT plans were made. The IMRT plans were selected as input for a RapidPlan model, which was used to generate 74 new IMRT plans. The new IMRT plans were used as input for a second RapidPlan model. This model was clinically implemented and used for generation of clinical treatment plans. Dosimetric parameters were compared using a Wilcoxon signed rank test or a 1-sided student's t-test. p < .05 was considered significant. RESULTS IMRT plans significantly reduced mean doses to lungs (MLD) and heart (MHD) by 1.6 Gy and 1.7 Gy in mean compared to VMAT plans. MLD was significantly (p < .001) reduced from 10.8 Gy to 9.4 Gy by using the second RapidPlan model. MHD was significantly (p < .001) reduced from 4.9 Gy to 3.9 Gy. The model was validated in prospectively collected treatment plans showing significantly lower MLD after the implementation of the second RapidPlan model. CONCLUSION Introduction of RapidPlan and beam angles selected based on the target and OARs position reduces dose to OARs.
Collapse
Affiliation(s)
- L. Hoffmann
- Department of Oncology, Section for Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - M. M. Knap
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - M. Alber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - D. S. Møller
- Department of Oncology, Section for Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
15
|
Lutz CM, Knap MM, Hoffmann L, Møller DS, Hansen O, Brink C, Schytte T, Nyhus CH, McCulloch T, Borissova S, Alber M, Khalil AA. Prospectively scored pulmonary toxicities in non-small cell lung cancer: Results from a randomized phase II dose escalation trial. Clin Transl Radiat Oncol 2021; 27:8-14. [PMID: 33385069 PMCID: PMC7770437 DOI: 10.1016/j.ctro.2020.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 10/26/2022] Open
Abstract
Purpose Prospectively scored radiation pneumonitis (RP) observed in a national, randomized phase II dose-escalation trial for patients with locally advanced non-small cell lung cancer (NSCLC) was investigated. Methods Patients with stage IIB-IIIB histologically proven NSCLC were treated with concomitant chemo-radiotherapy (oral Vinorelbine 3times/week) at 60 Gy/30fx (A-59pts) and 66 Gy/33fx (B-58pts) from 2009 to 2013 at five Danish RT centers. Grade 2 RP (CTCAEv3.0) was investigated with univariate analysis for association with clinical and dosimetric parameters, including dyspnea and cough at baseline and during RT. Multivariable logistic regression and Cox regression with regularization were used to find a multivariable model for RP ≥ G2. Results Despite a tendency of higher mean lung dose in the high-dose arm (median[range] A = 14.9 Gy[5.8,23.1], B = 17.5 Gy[8.6,24.8], p = 0.075), pulmonary toxicities were not significantly different (RP ≥ G2 41%(A) and 52%(B), p = 0.231). A Kaplan Meier analysis of the time to RP ≥ G2 between the two arms did not reach statistical significance (p = 0.180). Statistically significant risk factors for RP ≥ G2 were GTV size (OR = 2.091/100 cm3, p = 0.002), infection at baseline or during RT (OR = 8.087, p = 0.026), dyspnea at baseline (OR = 2.184, p = 0.044) and increase of cough during RT (OR = 2.787, p = 0.008). In the multivariable logistic regression and the Cox regression analysis, the deviances of the most predictive models were within one standard deviation of the null model. Conclusion No statistical difference between the high- and low dose arm was found in the risk of developing RP. The univariate analysis identified target volume, infection, dyspnea at baseline, and increase of cough during RT as risk factors for RP. The number of patients was too small to establish a statistically sound multivariable model.
Collapse
Affiliation(s)
- Christina M Lutz
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Marianne M Knap
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Lone Hoffmann
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Ditte S Møller
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Olfred Hansen
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Carsten Brink
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Tine Schytte
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | | | - Tine McCulloch
- Department of Oncology, Aalborg Hospital, Aalborg, Denmark
| | | | - Markus Alber
- Heidelberg Institute for Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Azza A Khalil
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
16
|
Hansen AT, Poulsen PR, Høyer M, Worm ES. Isotoxic dose prescription level strategies for stereotactic liver radiotherapy: the price of dose uniformity. Acta Oncol 2020; 59:558-564. [PMID: 31833432 DOI: 10.1080/0284186x.2019.1701200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: To find the optimal dose prescription strategy for liver SBRT, this study investigated the tradeoffs between achievable target dose and healthy liver dose for a range of isotoxic uniform and non-uniform prescription level strategies.Material and methods: Nine patients received ten liver SBRT courses with intrafraction motion monitoring during treatment. After treatment, five VMAT treatment plans were made for each treatment course. The PTV margin was 5 mm (left-right, anterior-posterior) and 10 mm (cranio-caudal). All plans had a mean CTV dose of 56.25 Gy in three fractions, while the PTV was covered by 50%, 67%, 67 s% (steep dose gradient outside CTV), 80%, and 95% of this dose, respectively. The 50%, 67 s%, 80%, and 95% plans were then renormalized to be isotoxic with the standard 67% plan according to a Lyman-Kutcher-Burman normal tissue complication probability model for radiation induced liver disease. The CTV D98 and mean dose of the iso-toxic plans were calculated both without and with the observed intrafraction motion, using a validated method for motion-including dose reconstruction.Results: Under isotoxic conditions, the average [range] mean CTV dose per fraction decreased gradually from 21.2 [20.5-22.7] Gy to 15.5 [15.0-16.6] Gy and the D98 dose per fraction decreased from 20.4 [19.7-21.7] Gy to 15.0 [14.5-15.5] Gy, as the prescription level to the PTV rim was increased from 50% to 95%. With inclusion of target motion the mean CTV dose was 20.5 [16.5-22.5] Gy (50% PTV rim dose) and 15.4 [13.9-16.7] Gy (95% rim dose) while D98 was 17.8 [7.4-20.6] Gy (50% rim dose) and 14.6 [8.8-15.7] Gy (95% rim dose).Conclusion: Requirements of a uniform PTV dose come at the price of excess normal tissue dose. A non-uniform PTV dose allows increased CTV mean dose at the cost of robustness toward intrafraction motion. The increase in planned CTV dose by non-uniform prescription outbalanced the dose deterioration caused by motion.
Collapse
Affiliation(s)
- Anders T. Hansen
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Per R. Poulsen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- The Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høyer
- The Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Esben S. Worm
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
17
|
Das SK, McGurk R, Miften M, Mutic S, Bowsher J, Bayouth J, Erdi Y, Mawlawi O, Boellaard R, Bowen SR, Xing L, Bradley J, Schoder H, Yin FF, Sullivan DC, Kinahan P. Task Group 174 Report: Utilization of [ 18 F]Fluorodeoxyglucose Positron Emission Tomography ([ 18 F]FDG-PET) in Radiation Therapy. Med Phys 2019; 46:e706-e725. [PMID: 31230358 DOI: 10.1002/mp.13676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/30/2019] [Accepted: 06/06/2019] [Indexed: 02/03/2023] Open
Abstract
The use of positron emission tomography (PET) in radiation therapy (RT) is rapidly increasing in the areas of staging, segmentation, treatment planning, and response assessment. The most common radiotracer is 18 F-fluorodeoxyglucose ([18 F]FDG), a glucose analog with demonstrated efficacy in cancer diagnosis and staging. However, diagnosis and RT planning are different endeavors with unique requirements, and very little literature is available for guiding physicists and clinicians in the utilization of [18 F]FDG-PET in RT. The two goals of this report are to educate and provide recommendations. The report provides background and education on current PET imaging systems, PET tracers, intensity quantification, and current utilization in RT (staging, segmentation, image registration, treatment planning, and therapy response assessment). Recommendations are provided on acceptance testing, annual and monthly quality assurance, scanning protocols to ensure consistency between interpatient scans and intrapatient longitudinal scans, reporting of patient and scan parameters in literature, requirements for incorporation of [18 F]FDG-PET in treatment planning systems, and image registration. The recommendations provided here are minimum requirements and are not meant to cover all aspects of the use of [18 F]FDG-PET for RT.
Collapse
Affiliation(s)
- Shiva K Das
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Ross McGurk
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Moyed Miften
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sasa Mutic
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - James Bowsher
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - John Bayouth
- Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Yusuf Erdi
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Osama Mawlawi
- Department of Imaging Physics, University of Texas, M D Anderson Cancer Center, Houston, TX, USA
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Stephen R Bowen
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey Bradley
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Heiko Schoder
- Molecular Imaging and Therapy Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Daniel C Sullivan
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Paul Kinahan
- Department of Radiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Functional perfusion image guided radiation treatment planning for locally advanced lung cancer. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2019; 11:76-81. [PMID: 33458283 PMCID: PMC7807615 DOI: 10.1016/j.phro.2019.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 01/28/2023]
Abstract
Background and purpose Functional avoidance radiation therapy (RT) aims at sparing functional lung regions. The purpose of this simulation study was to evaluate the feasibility of functional lung avoidance methodology in RT of lung cancer and to characterize the achievable dosimetry of single photon emission computed tomography (SPECT) guided treatment planning. Materials and methods Fifteen consecutive lung cancer patients were included and planned for definitive RT of 60–66 Gy in 2-Gy fractions. Two plans were optimized: a standard CT-plan, and functional SPECT-plan. The objective was to reduce dose to the highly functional lung subvolumes without compromising tumour coverage, and respecting dose to other organs at risk. For each patient a 3D-conformal, intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy plans were created for standard and functional avoidance. Standard versus functional dose-volume parameters for functional lung (FL) subvolumes, organs at risk and tumour coverage were compared. Results The largest dose reduction was achieved with IMRT plans. Functional plans resulted in dose reduction from 9.0 Gy to 6.7 Gy (mean reduction of 2.3 Gy or 26%) to the highest functional subvolume FL80% (95%CI 1.1; 3.5). Dose to FL40% was reduced from 13.3 Gy to 11.6 Gy with functional planning. Dose reduction to FL40% was 1.7 Gy (95%CI 0.9; 2.6). Functional volume of lung receiving over 20 Gy improved by 5% (standard 22%, functional 17%). Dose to organs at risk and tumour coverage were not significantly different between plans. Conclusions SPECT/CT-guided planning resulted in improved dose-volumetric outcomes for functional lung. This methodology may lead to potential reduction in radiation-induced lung toxicity.
Collapse
|
19
|
Abstract
The progressive integration of positron emission tomography/computed tomography (PET/CT) imaging in radiation therapy has its rationale in the biological intertumoral and intratumoral heterogeneity of malignant lesions that require the individual adjustment of radiation dose to obtain an effective local tumor control in cancer patients. PET/CT provides information on the biological features of tumor lesions such as metabolism, hypoxia, and proliferation that can identify radioresistant regions and be exploited to optimize treatment plans. Here, we provide an overview of the basic principles of PET-based target volume selection and definition using 18F-fluorodeoxyglucose (18F-FDG) and then we focus on the emerging strategies of dose painting and adaptive radiotherapy using different tracers. Previous studies provided consistent evidence that integration of 18F-FDG PET/CT in radiotherapy planning improves delineation of target volumes and reduces the uncertainties and variabilities of anatomical delineation of tumor sites. PET-based dose painting and adaptive radiotherapy are feasible strategies although their clinical implementation is highly demanding and requires strong technical, computational, and logistic efforts. Further prospective clinical trials evaluating local tumor control, survival, and toxicity of these emerging strategies will promote the full integration of PET/CT in radiation oncology.
Collapse
Affiliation(s)
- Rosa Fonti
- Institute of Biostructures and Bioimages, National Research Council, Naples, Italy
| | - Manuel Conson
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
20
|
De Ruysscher D, van Baardwijk A, Wanders R, Hendriks LE, Reymen B, van Empt W, Öllers MC, Bootsma G, Pitz C, van Eijsden L, Dingemans AMC. Individualized accelerated isotoxic concurrent chemo-radiotherapy for stage III non-small cell lung cancer: 5-Year results of a prospective study. Radiother Oncol 2019; 135:141-146. [PMID: 31015160 DOI: 10.1016/j.radonc.2019.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Stage III non-small cell lung cancer (NSCLC) still has a poor prognosis. Prior studies with individualized, accelerated, isotoxic dose escalation (INDAR) with 3D-CRT showed promising results, especially in patients not treated with concurrent chemo-radiotherapy. We investigated if INDAR delivered with IMRT would improve the overall survival (OS) of stage III NSCLC patients treated with concurrent chemotherapy and radiotherapy. PATIENTS AND METHODS Patients eligible for concurrent chemo-radiotherapy were entered in this prospective study. Radiotherapy was given to a dose of 45 Gy/30 fractions BID (1.5 Gy/fraction), followed by QD fractions of 2 Gy until a total dose determined by the normal tissue constraints. The primary endpoint was OS, secondary endpoints were loco-regional relapses and toxicity. RESULTS From May 4, 2009 until April 26, 2012, 185 patients were included. The mean tumor dose was 66.0 ± 12.8 Gy (36-73 Gy), delivered in a mean of 39.7 fractions in an overall treatment time of 38.2 days. The mean lung dose (MLD) was 17.3 Gy. The median OS was 19.8 months (95% CI 17.3-22.3) with a 5-year OS of 24.3%. Loco-regional failures as first site of recurrence occurred in 59/185 patients (31.8%). Isolated nodal failures (INF) were observed in 3/185 patients (1.6%). Dyspnea grade 3 was seen in 3.2% of patients and transient dysphagia grade 3 in 22%. CONCLUSIONS INDAR with IMRT concurrently with chemotherapy did not lead to a sign of an improved OS in unselected stage III NSCLC patients.
Collapse
Affiliation(s)
- Dirk De Ruysscher
- Maastricht University Medical Center, Department of Radiation Oncology (Maastro Clinic), GROW School for Oncology and Developmental Biology, Maastricht, The Netherlands.
| | - Angela van Baardwijk
- Maastricht University Medical Center, Department of Radiation Oncology (Maastro Clinic), GROW School for Oncology and Developmental Biology, Maastricht, The Netherlands
| | - Rinus Wanders
- Maastricht University Medical Center, Department of Radiation Oncology (Maastro Clinic), GROW School for Oncology and Developmental Biology, Maastricht, The Netherlands
| | - Lizza E Hendriks
- Maastricht University Medical Center, Department of Pulmonology, GROW School for Oncology and Developmental Biology, Maastricht, The Netherlands
| | - Bart Reymen
- Maastricht University Medical Center, Department of Radiation Oncology (Maastro Clinic), GROW School for Oncology and Developmental Biology, Maastricht, The Netherlands
| | - Wouter van Empt
- Maastricht University Medical Center, Department of Radiation Oncology (Maastro Clinic), GROW School for Oncology and Developmental Biology, Maastricht, The Netherlands
| | - Michel C Öllers
- Maastricht University Medical Center, Department of Radiation Oncology (Maastro Clinic), GROW School for Oncology and Developmental Biology, Maastricht, The Netherlands
| | - Gerben Bootsma
- Zuyderland Hospital, Department of Pulmonology, Geleen, The Netherlands
| | - Cordula Pitz
- Laurentius Hospital, Department of Pulmonology, Roermond, The Netherlands
| | - Linda van Eijsden
- Sint Jans Gasthuis, Department of Pulmonology, Weert, The Netherlands
| | - Anne-Marie C Dingemans
- Maastricht University Medical Center, Department of Pulmonology, GROW School for Oncology and Developmental Biology, Maastricht, The Netherlands
| |
Collapse
|
21
|
Radiation Therapy in Non-small-Cell Lung Cancer. Radiat Oncol 2019. [DOI: 10.1007/978-3-319-52619-5_34-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Grootjans W, de Geus-Oei LF, Bussink J. Image-guided adaptive radiotherapy in patients with locally advanced non-small cell lung cancer: the art of PET. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2018; 62:369-384. [PMID: 29869486 DOI: 10.23736/s1824-4785.18.03084-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
With a worldwide annual incidence of 1.8 million cases, lung cancer is the most diagnosed form of cancer in men and the third most diagnosed form of cancer in women. Histologically, 80-85% of all lung cancers can be categorized as non-small cell lung cancer (NSCLC). For patients with locally advanced NSCLC, standard of care is fractionated radiotherapy combined with chemotherapy. With the aim of improving clinical outcome of patients with locally advanced NSCLC, combined and intensified treatment approaches are increasingly being used. However, given the heterogeneity of this patient group with respect to tumor biology and subsequent treatment response, a personalized treatment approach is required to optimize therapeutic effect and minimize treatment induced toxicity. Medical imaging, in particular positron emission tomography (PET), before and during the course radiotherapy is increasingly being used to personalize radiotherapy. In this setting, PET imaging can be used to improve delineation of target volumes, employ molecularly-guided dose painting strategies, early response monitoring, prediction and monitoring of treatment-related toxicity. The concept of PET image-guided adaptive radiotherapy (IGART) is an interesting approach to personalize radiotherapy for patients with locally advanced NSCLC, which might ultimately contribute to improved clinical outcomes and reductions in frequency of treatment-related adverse events in this patient group. In this review, we provide a comprehensive overview of available clinical data supporting the use of PET imaging for IGART in patients with locally advanced NSCLC.
Collapse
Affiliation(s)
- Willem Grootjans
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands -
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Hoffmann L, Knap MM, Khalil AA, Lutz CM, Sloth Møller D. The NARLAL2 dose escalation trial: dosimetric implications of inter-fractional changes in organs at risk. Acta Oncol 2018; 57:473-479. [PMID: 28830293 DOI: 10.1080/0284186x.2017.1366049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Phase II trials suggested that survival rates for locally advanced lung cancer could be increased by radiotherapy dose escalation. However, results of the phase III RTOG 0617 trial illustrated an imminent risk of treatment-related death. This could be thwarted with strict constraints to organs at risk (OARs) and control of the delivered dose. This study investigates the impact of anatomical changes during radiotherapy on escalated dose distributions used in the Danish NARLAL2 dose escalation trial. MATERIAL AND METHODS The phase III NARLAL2 trial randomizes patients between a standard and an escalated treatment plan. In the escalated arm, mean doses up to 95 Gy/33 fractions (tumour) and 74 Gy/33 fractions (lymph nodes) are delivered to the most 18fluorodeoxyglucose-positron emission tomography (18FDG PET) active regions. The dose distributions are limited by strict constraints to OARs. For a group of 27 patients, a surveillance scan (sCT) was acquired at fraction 11. The original-escalated treatment plans were recalculated on the sCTs and the impact of inter-fractional changes evaluated. RESULTS A total of 13 patients (48%) had overdosage of least one OAR. Constraints for the oesophagus, trachea and aorta were violated in 26% of the patients. No overdosage was seen for heart or bronchi. For the connective tissue (all tissue in the mediastinum not identified as OAR or tumour) overdosage was seen in 41% of the patients and for the chest wall in 30% of the patients. The main reason for overdosage was tumour shrinkage. CONCLUSIONS Anatomical changes during radiotherapy caused one or more OAR constraint violations for approximately half of the patient cohort. The main cause was tumour shrinkage. For lung cancer radiotherapy dose escalation trials, we recommend incorporation of adaptive radiotherapy strategies.
Collapse
Affiliation(s)
- Lone Hoffmann
- Department of Oncology, Aarhus University Hospital, Aarhus C, Denmark
| | | | - Azza Ahmed Khalil
- Department of Oncology, Aarhus University Hospital, Aarhus C, Denmark
| | | | | |
Collapse
|
24
|
Brink C, Lorenzen EL, Krogh SL, Westberg J, Berg M, Jensen I, Thomsen MS, Yates ES, Offersen BV. DBCG hypo trial validation of radiotherapy parameters from a national data bank versus manual reporting. Acta Oncol 2018; 57:107-112. [PMID: 29202666 DOI: 10.1080/0284186x.2017.1406140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The current study evaluates the data quality achievable using a national data bank for reporting radiotherapy parameters relative to the classical manual reporting method of selected parameters. METHODS The data comparison is based on 1522 Danish patients of the DBCG hypo trial with data stored in the Danish national radiotherapy data bank. In line with standard DBCG trial practice selected parameters were also reported manually to the DBCG database. Categorical variables are compared using contingency tables, and comparison of continuous parameters is presented in scatter plots. RESULTS For categorical variables 25 differences between the data bank and manual values were located. Of these 23 were related to mistakes in the manual reported value whilst the remaining two were a wrong classification in the data bank. The wrong classification in the data bank was related to lack of dose information, since the two patients had been treated with an electron boost based on a manual calculation, thus data was not exported to the data bank, and this was not detected prior to comparison with the manual data. For a few database fields in the manual data an ambiguity of the parameter definition of the specific field is seen in the data. This was not the case for the data bank, which extract all data consistently. CONCLUSIONS In terms of data quality the data bank is superior to manually reported values. However, there is a need to allocate resources for checking the validity of the available data as well as ensuring that all relevant data is present. The data bank contains more detailed information, and thus facilitates research related to the actual dose distribution in the patients.
Collapse
Affiliation(s)
- Carsten Brink
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark
| | - Ebbe L. Lorenzen
- Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark
| | - Simon Long Krogh
- Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark
| | - Jonas Westberg
- Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark
| | - Martin Berg
- Department of Medical Physics, Vejle Hospital, Vejle, Denmark
| | - Ingelise Jensen
- Department of Medical Physics, Aalborg University Hospital, Aalborg, Denmark
| | | | | | - Birgitte Vrou Offersen
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
25
|
|
26
|
Thomas HM, Kinahan PE, Samuel JJE, Bowen SR. Impact of tumour motion compensation and delineation methods on FDG PET-based dose painting plan quality for NSCLC radiation therapy. J Med Imaging Radiat Oncol 2017; 62:81-90. [PMID: 29193781 DOI: 10.1111/1754-9485.12693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022]
Abstract
INTRODUCTION To quantitatively estimate the impact of different methods for both boost volume delineation and respiratory motion compensation of [18F] FDG PET/CT images on the fidelity of planned non-uniform 'dose painting' plans to the prescribed boost dose distribution. METHODS Six locally advanced non-small cell lung cancer (NSCLC) patients were retrospectively reviewed. To assess the impact of respiratory motion, time-averaged (3D AVG), respiratory phase-gated (4D GATED) and motion-encompassing (4D MIP) PET images were used. The boost volumes were defined using manual contour (MANUAL), fixed threshold (FIXED) and gradient search algorithm (GRADIENT). The dose painting prescription of 60 Gy base dose to the planning target volume and an integral dose of 14 Gy (total 74 Gy) was discretized into seven treatment planning substructures and linearly redistributed according to the relative SUV at every voxel in the boost volume. Fifty-four dose painting plan combinations were generated and conformity was evaluated using quality index VQ0.95-1.05, which represents the sum of planned dose voxels within 5% deviation from the prescribed dose. Trends in plan quality and magnitude of achievable dose escalation were recorded. RESULTS Different segmentation techniques produced statistically significant variations in maximum planned dose (P < 0.02), as well as plan quality between segmentation methods for 4D GATED and 4D MIP PET images (P < 0.05). No statistically significant differences in plan quality and maximum dose were observed between motion-compensated PET-based plans (P > 0.75). Low variability in plan quality was observed for FIXED threshold plans, while MANUAL and GRADIENT plans achieved higher dose with lower plan quality indices. CONCLUSIONS The dose painting plans were more sensitive to segmentation of boost volumes than PET motion compensation in this study sample. Careful consideration of boost target delineation and motion compensation strategies should guide the design of NSCLC dose painting trials.
Collapse
Affiliation(s)
- Hannah Mary Thomas
- Department of Radiation Oncology, School of Medicine, University of Washington, Seattle, Washington, USA.,Department of Physics, School of Advanced Sciences, VIT University, Vellore, India
| | - Paul E Kinahan
- Department of Radiology, School of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Stephen R Bowen
- Department of Radiation Oncology, School of Medicine, University of Washington, Seattle, Washington, USA.,Department of Radiology, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
27
|
Even AJG, Reymen B, La Fontaine MD, Das M, Mottaghy FM, Belderbos JSA, De Ruysscher D, Lambin P, van Elmpt W. Clustering of multi-parametric functional imaging to identify high-risk subvolumes in non-small cell lung cancer. Radiother Oncol 2017; 125:379-384. [PMID: 29122363 DOI: 10.1016/j.radonc.2017.09.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE We aimed to identify tumour subregions with characteristic phenotypes based on pre-treatment multi-parametric functional imaging and correlate these subregions to treatment outcome. The subregions were created using imaging of metabolic activity (FDG-PET/CT), hypoxia (HX4-PET/CT) and tumour vasculature (DCE-CT). MATERIALS AND METHODS 36 non-small cell lung cancer (NSCLC) patients underwent functional imaging prior to radical radiotherapy. Kinetic analysis was performed on DCE-CT scans to acquire blood flow (BF) and volume (BV) maps. HX4-PET/CT and DCE-CT scans were non-rigidly co-registered to the planning FDG-PET/CT. Two clustering steps were performed on multi-parametric images: first to segment each tumour into homogeneous subregions (i.e. supervoxels) and second to group the supervoxels of all tumours into phenotypic clusters. Patients were split based on the absolute or relative volume of supervoxels in each cluster; overall survival was compared using a log-rank test. RESULTS Unsupervised clustering of supervoxels yielded four independent clusters. One cluster (high hypoxia, high FDG, intermediate BF/BV) related to a high-risk tumour type: patients assigned to this cluster had significantly worse survival compared to patients not in this cluster (p = 0.035). CONCLUSIONS We designed a subregional analysis for multi-parametric imaging in NSCLC, and showed the potential of subregion classification as a biomarker for prognosis. This methodology allows for a comprehensive data-driven analysis of multi-parametric functional images.
Collapse
Affiliation(s)
- Aniek J G Even
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands; The D-Lab: Decision Support for Precision Medicine, GROW - School for Oncology & MCCC, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Bart Reymen
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands
| | - Matthew D La Fontaine
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marco Das
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, The Netherlands
| | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, The Netherlands; Department of Nuclear Medicine, University Hospital Aachen, Germany
| | - José S A Belderbos
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands; The D-Lab: Decision Support for Precision Medicine, GROW - School for Oncology & MCCC, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands
| |
Collapse
|
28
|
Grau C, Høyer M, Poulsen PR, Muren LP, Korreman SS, Tanderup K, Lindegaard JC, Alsner J, Overgaard J. Rethink radiotherapy - BIGART 2017. Acta Oncol 2017; 56:1341-1352. [PMID: 29148908 DOI: 10.1080/0284186x.2017.1371326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cai Grau
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høyer
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Ludvig Paul Muren
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Kari Tanderup
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|