1
|
Liu Y, Nie X, Ahmad A, Rimner A, Li G. Super-resolution reconstruction of time-resolved four-dimensional computed tomography (TR-4DCT) with multiple breathing cycles based on TR-4DMRI. Med Phys 2025; 52:504-517. [PMID: 39460999 DOI: 10.1002/mp.17487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Respiratory motion irregularities in lung cancer patients are common and can be severe during multi-fractional (∼20 mins/fraction) radiotherapy. However, the current clinical standard of motion management is to use a single-breath respiratory-correlated four-dimension computed tomography (RC-4DCT or 4DCT) to estimate tumor motion to delineate the internal tumor volume (ITV), covering the trajectory of tumor motion, as a treatment target. PURPOSE To develop a novel multi-breath time-resolved (TR) 4DCT using the super-resolution reconstruction framework with TR 4D magnetic resonance imaging (TR-4DMRI) as guidance for patient-specific breathing irregularity assessment, overcoming the shortcomings of RC-4DCT, including binning artifacts and single-breath limitations. METHODS Six lung cancer patients participated in the IRB-approved protocol study to receive multiple T1w MRI scans, besides an RC-4DCT scan on the simulation day, including 80 low-resolution (lowR: 5 × 5 × 5 mm3) free-breathing (FB) 3D cine MRFB images in 40 s (2 Hz) and a high-resolution (highR: 2 × 2 × 2 mm3) 3D breath-hold (BH) MRBH image for each patient. A CT (1 × 1 × 3 mm3) image was selected from 10-bin RC-4DCT with minimal binning artifacts and a close diaphragm match (<1 cm) to the MRBH image. A mutual-information-based Freeform deformable image registration (DIR) was used to register the CT and MRBH via the opposite directions (namely F1:C T Source → MR Target BH ${\mathrm{C}}{{{\mathrm{T}}}_{{\mathrm{Source}}}} \to {\mathrm{MR}}_{{\mathrm{Target}}}^{{\mathrm{BH}}}$ and F2:C T Target ← MR Source BH ${\mathrm{C}}{{{\mathrm{T}}}_{{\mathrm{Target}}}} \leftarrow {\mathrm{MR}}_{{\mathrm{Source}}}^{{\mathrm{BH}}}$ ) to establish CT-MR voxel correspondences. An intensity-based enhanced Demons DIR was then applied forMR Source BH → MR Target FB ${\mathrm{MR}}_{{\mathrm{Source}}}^{{\mathrm{BH}}} \to {\mathrm{MR}}_{{\mathrm{Target}}}^{{\mathrm{FB}}}$ , in which the original MRBH was used in D1:C T Source → ( MR Source BH → MR Target FB ) Target ${\mathrm{C}}{{{\mathrm{T}}}_{{\mathrm{Source}}}} \to {{({\mathrm{MR}}_{{\mathrm{Source}}}^{{\mathrm{BH}}} \to {\mathrm{MR}}_{{\mathrm{Target}}}^{{\mathrm{FB}}})}_{{\mathrm{Target}}}}$ , while the deformed MRBH was used in D2:( C T Target ← MR Source BH ) Source → MR Target FB ${{( \text{C}{{\text{T}}_{\text{Target}}}\leftarrow \text{MR}_{\text{Source}}^{\text{BH}} )}_{\text{Source}}}\to \text{MR}_{\text{Target}}^{\text{FB}}$ . The deformation vector fields (DVFs) obtained from each DIR were composed to apply to the deformed CT (D1) and original CT (D2) to reconstruct TR-4DCT images. A digital 4D-XCAT phantom at the end of inhalation (EOI) and end of exhalation (EOE) with 2.5 cm diaphragmatic motion and three spherical targets (ϕ = 2, 3, 4 cm) were first tested to reconstruct TR-4DCT. For each of the six patients, TR-4DCT images at the EOI, middle (MID), and EOE were reconstructed with both D1 and D2 approaches. TR-4DCT image quality was evaluated with mean distance-to-agreement (MDA) at the diaphragm compared with MRFB, tumor volume ratio (TVR) referenced to MRBH, and tumor shape difference (DICE index) compared with the selected input CT. Additionally, differences in the tumor center of mass (|∆COMD1-D2|), together with TVR and DICE comparison, was assessed in the D1 and D2 reconstructed TR-4DCT images. RESULTS In the phantom, TR-4DCT quality is assessed by MDA = 2.0 ± 0.8 mm at the diaphragm, TVR = 0.8 ± 0.0 for all tumors, and DICE = 0.83 ± 0.01, 0.85 ± 0.02, 0.88 ± 0.01 for ϕ = 2, 3, 4 cm tumors, respectively. In six patients, the MDA in diaphragm match is -1.6 ± 3.1 mm (D1) and 1.0 ± 3.9 mm (D2) between the reconstructed TR-4DCT and lowR MRFB among 18 images (3 phases/patient). The tumor similarity is TVR = 1.2 ± 0.2 and DICE = 0.70 ± 0.07 for D1 and TVR = 1.4 ± 0.3 (D2) and DICE = 0.73 ± 0.07 for D2. The tumor position difference is |∆COMD1-D2| = 1.2 ± 0.8 mm between D1 and D2 reconstructions. CONCLUSION The feasibility of super-resolution reconstruction of multi-breathing-cycle TR-4DCT is demonstrated and image quality at the diaphragm and tumor is assessed in both the 4D-XCAT phantom and six lung cancer patients. The similarity of D1 and D2 reconstruction suggests consistent and reliable DIR results. Clinically, TR-4DCT has the potential for breathing irregularity assessment and dosimetry evaluation in radiotherapy.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Xingyu Nie
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Asala Ahmad
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Guang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
2
|
Mein S, Wuyckens S, Li X, Both S, Carabe A, Vera MC, Engwall E, Francesco F, Graeff C, Gu W, Hong L, Inaniwa T, Janssens G, de Jong B, Li T, Liang X, Liu G, Lomax A, Mackie T, Mairani A, Mazal A, Nesteruk KP, Paganetti H, Pérez Moreno JM, Schreuder N, Soukup M, Tanaka S, Tessonnier T, Volz L, Zhao L, Ding X. Particle arc therapy: Status and potential. Radiother Oncol 2024; 199:110434. [PMID: 39009306 DOI: 10.1016/j.radonc.2024.110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/23/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
There is a rising interest in developing and utilizing arc delivery techniques with charged particle beams, e.g., proton, carbon or other ions, for clinical implementation. In this work, perspectives from the European Society for Radiotherapy and Oncology (ESTRO) 2022 physics workshop on particle arc therapy are reported. This outlook provides an outline and prospective vision for the path forward to clinically deliverable proton, carbon, and other ion arc treatments. Through the collaboration among industry, academic, and clinical research and development, the scientific landscape and outlook for particle arc therapy are presented here to help our community understand the physics, radiobiology, and clinical principles. The work is presented in three main sections: (i) treatment planning, (ii) treatment delivery, and (iii) clinical outlook.
Collapse
Affiliation(s)
- Stewart Mein
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Sophie Wuyckens
- UCLouvain, Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Xiaoqiang Li
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Macarena Chocan Vera
- UCLouvain, Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | | | | | - Christian Graeff
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Wenbo Gu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Liu Hong
- Ion Beam Applications SA, Louvain-la-Neuve, Belgium
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Medical Physics and Engineering, Graduate School of Medicine, Division of Health Sciences, Osaka University, Osaka, Japan
| | | | - Bas de Jong
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Taoran Li
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Gang Liu
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Antony Lomax
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; ETH, Department of Physics, Zürich, Switzerland
| | - Thomas Mackie
- Department of Human Oncology, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| | | | - Konrad P Nesteruk
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | | | | | | | - Sodai Tanaka
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Lennart Volz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Lewei Zhao
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Xuanfeng Ding
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA.
| |
Collapse
|
3
|
Peteani G, Paganelli C, Giovannelli AC, Bachtiary B, Safai S, Rogers S, Pusterla O, Riesterer O, Weber DC, Lomax AJ, Baroni G, Fattori G. Retrospective reconstruction of four-dimensional magnetic resonance from interleaved cine imaging - A comparative study with four-dimensional computed tomography in the lung. Phys Imaging Radiat Oncol 2024; 29:100529. [PMID: 38235286 PMCID: PMC10792758 DOI: 10.1016/j.phro.2023.100529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024] Open
Abstract
Background and purpose Imaging of respiration-induced anatomical changes is essential to ensure high accuracy in radiotherapy of lung cancer. We expanded here on methods for retrospective reconstruction of time-resolved volumetric magnetic resonance (4DMR) of the thoracic region and benchmarked the results against 4D computed tomography (4DCT). Materials and method MR data of six lung cancer patients were collected by interleaving cine-navigator images with 2D data frame images, acquired across the thorax. The data frame images have been stacked in volumes based on a similarity metric that considers the anatomical deformation of lungs, while addressing ambiguities in respiratory phase detection and interpolation of missing data. The resulting images were validated against cine-navigator images and compared to paired 4DCTs in terms of amplitude and period of motion, assessing differences in internal target volume (ITV) margin definition. Results 4DMR-based motion amplitude was on average within 1.8 mm of that measured in the corresponding 2D cine-navigator images. In our dataset, the 4DCT motion and the 4DMR median amplitude were always within 3.8 mm. The median period was generally close to CT references, although deviations up to 24 % have been observed. These changes were reflected in the ITV, which was generally larger for MRI than for 4DCT (up to 39.7 %). Conclusions The proposed algorithm for retrospective reconstruction of time-resolved volumetric MR provided quality anatomical images with high temporal resolution for motion modelling and treatment planning. The potential for imaging organ motion variability makes 4DMR a valuable complement to standard 4DCT imaging.
Collapse
Affiliation(s)
- Giulia Peteani
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Anna Chiara Giovannelli
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
- Department of Physics, ETH Zürich, Zürich, Switzerland
| | - Barbara Bachtiary
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - Susanne Rogers
- Department of Radiation Oncology, Kantonsspital Aarau, 5001 Aarau, Switzerland
| | - Orso Pusterla
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Radiation Oncology, University Hospital of Zürich, 8091 Zürich, Switzerland
| | - Oliver Riesterer
- Department of Radiation Oncology, Kantonsspital Aarau, 5001 Aarau, Switzerland
| | - Damien Charles Weber
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
- Department of Radiation Oncology, University Hospital of Zürich, 8091 Zürich, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Antony John Lomax
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
- Department of Physics, ETH Zürich, Zürich, Switzerland
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Bioengineering Unit, National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Giovanni Fattori
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
- Department of Physics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
4
|
Giovannelli AC, Köthe A, Safai S, Meer D, Zhang Y, Weber DC, Lomax AJ, Fattori G. Exploring beamline momentum acceptance for tracking respiratory variability in lung cancer proton therapy: a simulation study. Phys Med Biol 2023; 68:195013. [PMID: 37652055 DOI: 10.1088/1361-6560/acf5c4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 08/31/2023] [Indexed: 09/02/2023]
Abstract
Objective. Investigating the aspects of proton beam delivery to track organ motion with pencil beam scanning therapy. Considering current systems as a reference, specify requirements for next-generation units aiming at real-time image-guided treatments.Approach. Proton treatments for six non-small cell lung cancer (NSCLC) patients were simulated using repeated 4DCTs to model respiratory motion variability. Energy corrections required for this treatment site were evaluated for different approaches to tumour tracking, focusing on the potential for energy adjustment within beamline momentum acceptance (dp/p). A respiration-synchronised tracking, taking into account realistic machine delivery limits, was compared to ideal tracking scenarios, in which unconstrained energy corrections are possible. Rescanning and the use of multiple fields to mitigate residual interplay effects and dose degradation have also been investigated.Main results. Energy correction requirements increased with motion amplitudes, for all patients and tracking scenarios. Higher dose degradation was found for larger motion amplitudes, rescanning has beneficial effects and helped to improve dosimetry metrics for the investigated limited dp/pof 1.2% (realistic) and 2.4%. The median differences between ideal and respiratory-synchronised tracking show minimal discrepancies, 1% and 5% respectively for dose coverage (CTV V95) and homogeneity (D5-D95). Multiple-field planning improves D5-D95 up to 50% in the most extreme cases while it does not show a significant effect on V95.Significance. This work shows the potential of implementing tumour tracking in current proton therapy units and outlines design requirements for future developments. Energy regulation within momentum acceptance was investigated to tracking tumour motion with respiratory-synchronisation, achieving results in line with the performance of ideal tracking scenarios. ±5% Δp/p would allow to compensate for all range offsets in our NSCLC patient cohort, including breathing variability. However, the realistic momentum of 1.2% dp/prepresentative of existing medical units limitations, has been shown to preserve plan quality.
Collapse
Affiliation(s)
- Anna Chiara Giovannelli
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Department of Physics, ETH Zürich, 8092 Zürich, Switzerland
| | - Andreas Köthe
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Department of Physics, ETH Zürich, 8092 Zürich, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - David Meer
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Damien Charles Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Department of Radiation Oncology, University Hospital of Zürich, 8091 Zürich, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Antony John Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Department of Physics, ETH Zürich, 8092 Zürich, Switzerland
| | - Giovanni Fattori
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
5
|
Duetschler A, Prendi J, Safai S, Weber DC, Lomax AJ, Zhang Y. Limitations of phase-sorting based pencil beam scanned 4D proton dose calculations under irregular motion. Phys Med Biol 2022; 68. [PMID: 36571234 DOI: 10.1088/1361-6560/aca9b6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
Objective.4D dose calculation (4DDC) for pencil beam scanned (PBS) proton therapy is typically based on phase-sorting of individual pencil beams onto phases of a single breathing cycle 4DCT. Understanding the dosimetric limitations and uncertainties of this approach is essential, especially for the realistic treatment scenario with irregular free breathing motion.Approach.For three liver and three lung cancer patient CTs, the deformable multi-cycle motion from 4DMRIs was used to generate six synthetic 4DCT(MRI)s, providing irregular motion (11/15 cycles for liver/lung; tumor amplitudes ∼4-18 mm). 4DDCs for two-field plans were performed, with the temporal resolution of the pencil beam delivery (4-200 ms) or with 8 phases per breathing cycle (500-1000 ms). For the phase-sorting approach, the tumor center motion was used to determine the phase assignment of each spot. The dose was calculated either using the full free breathing motion or individually repeating each single cycle. Additionally, the use of an irregular surrogate signal prior to 4DDC on a repeated cycle was simulated. The CTV volume with absolute dose differences >5% (Vdosediff>5%) and differences in CTVV95%andD5%-D95%compared to the free breathing scenario were evaluated.Main results.Compared to 4DDC considering the full free breathing motion with finer spot-wise temporal resolution, 4DDC based on a repeated single 4DCT resulted inVdosediff>5%of on average 34%, which resulted in an overestimation ofV95%up to 24%. However, surrogate based phase-sorting prior to 4DDC on a single cycle 4DCT, reduced the averageVdosediff>5%to 16% (overestimationV95%up to 19%). The 4DDC results were greatly influenced by the choice of reference cycle (Vdosediff>5%up to 55%) and differences due to temporal resolution were much smaller (Vdosediff>5%up to 10%).Significance.It is important to properly consider motion irregularity in 4D dosimetric evaluations of PBS proton treatments, as 4DDC based on a single 4DCT can lead to an underestimation of motion effects.
Collapse
Affiliation(s)
- A Duetschler
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland.,Department of Physics, ETH Zürich, 8092 Zürich, CH, Switzerland
| | - J Prendi
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland.,Department of Physics, University of Basel, 4056 Basel, CH, Switzerland
| | - S Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| | - D C Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland.,Department of Radiation Oncology, University Hospital of Zürich, 8091 Zürich, CH, Switzerland.,Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, CH, Switzerland
| | - A J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland.,Department of Physics, ETH Zürich, 8092 Zürich, CH, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| |
Collapse
|
6
|
Pakela JM, Knopf A, Dong L, Rucinski A, Zou W. Management of Motion and Anatomical Variations in Charged Particle Therapy: Past, Present, and Into the Future. Front Oncol 2022; 12:806153. [PMID: 35356213 PMCID: PMC8959592 DOI: 10.3389/fonc.2022.806153] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
The major aim of radiation therapy is to provide curative or palliative treatment to cancerous malignancies while minimizing damage to healthy tissues. Charged particle radiotherapy utilizing carbon ions or protons is uniquely suited for this task due to its ability to achieve highly conformal dose distributions around the tumor volume. For these treatment modalities, uncertainties in the localization of patient anatomy due to inter- and intra-fractional motion present a heightened risk of undesired dose delivery. A diverse range of mitigation strategies have been developed and clinically implemented in various disease sites to monitor and correct for patient motion, but much work remains. This review provides an overview of current clinical practices for inter and intra-fractional motion management in charged particle therapy, including motion control, current imaging and motion tracking modalities, as well as treatment planning and delivery techniques. We also cover progress to date on emerging technologies including particle-based radiography imaging, novel treatment delivery methods such as tumor tracking and FLASH, and artificial intelligence and discuss their potential impact towards improving or increasing the challenge of motion mitigation in charged particle therapy.
Collapse
Affiliation(s)
- Julia M. Pakela
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Antje Knopf
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department I of Internal Medicine, Center for Integrated Oncology Cologne, University Hospital of Cologne, Cologne, Germany
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Antoni Rucinski
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Knopf AC, Czerska K, Fracchiolla F, Graeff C, Molinelli S, Rinaldi I, Rucincki A, Sterpin E, Stützer K, Trnkova P, Zhang Y, Chang JY, Giap H, Liu W, Schild SE, Simone CB, Lomax AJ, Meijers A. Clinical necessity of multi-image based (4DMIB) optimization for targets affected by respiratory motion and treated with scanned particle therapy – a comprehensive review. Radiother Oncol 2022; 169:77-85. [DOI: 10.1016/j.radonc.2022.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 12/28/2022]
|
8
|
Pastor-Serrano O, Habraken S, Lathouwers D, Hoogeman M, Schaart D, Perkó Z. How should we model and evaluate breathing interplay effects in IMPT? Phys Med Biol 2021; 66. [PMID: 34757958 DOI: 10.1088/1361-6560/ac383f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/10/2021] [Indexed: 11/12/2022]
Abstract
Breathing interplay effects in Intensity Modulated Proton Therapy (IMPT) arise from the interaction between target motion and the scanning beam. Assessing the detrimental effect of interplay and the clinical robustness of several mitigation techniques requires statistical evaluation procedures that take into account the variability of breathing during dose delivery. In this study, we present such a statistical method to model intra-fraction respiratory motion based on breathing signals and assess clinical relevant aspects related to the practical evaluation of interplay in IMPT such as how to model irregular breathing, how small breathing changes affect the final dose distribution, and what is the statistical power (number of different scenarios) required for trustworthy quantification of interplay effects. First, two data-driven methodologies to generate artificial patient-specific breathing signals are compared: a simple sinusoidal model, and a precise probabilistic deep learning model generating very realistic samples of patient breathing. Second, we investigate the highly fluctuating relationship between interplay doses and breathing parameters, showing that small changes in breathing period result in large local variations in the dose. Our results indicate that using a limited number of samples to calculate interplay statistics introduces a bigger error than using simple sinusoidal models based on patient parameters or disregarding breathing hysteresis during the evaluation. We illustrate the power of the presented statistical method by analyzing interplay robustness of 4DCT and Internal Target Volume (ITV) treatment plans for a 8 lung cancer patients, showing that, unlike 4DCT plans, even 33 fraction ITV plans systematically fail to fulfill robustness requirements.
Collapse
Affiliation(s)
- Oscar Pastor-Serrano
- Delft University of Technology, Department of Radiation Science and Technology, Delft, The Netherlands
| | - Steven Habraken
- Erasmus MC Cancer Institute, University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands.,HollandPTC, Department of Radiation Oncology, Delft, The Netherlands
| | - Danny Lathouwers
- Delft University of Technology, Department of Radiation Science and Technology, Delft, The Netherlands
| | - Mischa Hoogeman
- Erasmus MC Cancer Institute, University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands.,HollandPTC, Department of Radiation Oncology, Delft, The Netherlands
| | - Dennis Schaart
- Delft University of Technology, Department of Radiation Science and Technology, Delft, The Netherlands.,HollandPTC, Department of Radiation Oncology, Delft, The Netherlands
| | - Zoltán Perkó
- Delft University of Technology, Department of Radiation Science and Technology, Delft, The Netherlands
| |
Collapse
|
9
|
Czerska K, Emert F, Kopec R, Langen K, McClelland JR, Meijers A, Miyamoto N, Riboldi M, Shimizu S, Terunuma T, Zou W, Knopf A, Rucinski A. Clinical practice vs. state-of-the-art research and future visions: Report on the 4D treatment planning workshop for particle therapy - Edition 2018 and 2019. Phys Med 2021; 82:54-63. [PMID: 33588228 DOI: 10.1016/j.ejmp.2020.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
The 4D Treatment Planning Workshop for Particle Therapy, a workshop dedicated to the treatment of moving targets with scanned particle beams, started in 2009 and since then has been organized annually. The mission of the workshop is to create an informal ground for clinical medical physicists, medical physics researchers and medical doctors interested in the development of the 4D technology, protocols and their translation into clinical practice. The 10th and 11th editions of the workshop took place in Sapporo, Japan in 2018 and Krakow, Poland in 2019, respectively. This review report from the Sapporo and Krakow workshops is structured in two parts, according to the workshop programs. The first part comprises clinicians and physicists review of the status of 4D clinical implementations. Corresponding talks were given by speakers from five centers around the world: Maastro Clinic (The Netherlands), University Medical Center Groningen (The Netherlands), MD Anderson Cancer Center (United States), University of Pennsylvania (United States) and The Proton Beam Therapy Center of Hokkaido University Hospital (Japan). The second part is dedicated to novelties in 4D research, i.e. motion modelling, artificial intelligence and new technologies which are currently being investigated in the radiotherapy field.
Collapse
Affiliation(s)
- Katarzyna Czerska
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland.
| | - Frank Emert
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland
| | - Renata Kopec
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Katja Langen
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jamie R McClelland
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Arturs Meijers
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Naoki Miyamoto
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan; Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Marco Riboldi
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Germany
| | - Shinichi Shimizu
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan; Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toshiyuki Terunuma
- Faculty of Medicine, University of Tsukuba, Japan; Proton Medical Research Center, University of Tsukuba Hospital, Japan
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Antje Knopf
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
10
|
Krieger M, Giger A, Jud C, Duetschler A, Salomir R, Bieri O, Bauman G, Nguyen D, Cattin PC, Weber DC, Lomax AJ, Zhang Y. Liver-ultrasound-guided lung tumour tracking for scanned proton therapy: a feasibility study. Phys Med Biol 2021; 66:035011. [PMID: 33238246 DOI: 10.1088/1361-6560/abcde6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pencil beam scanned (PBS) proton therapy of lung tumours is hampered by respiratory motion and the motion-induced density changes along the beam path. In this simulation study, we aim to investigate the effectiveness of proton beam tracking for lung tumours both under ideal conditions and in conjunction with a respiratory motion model guided by real-time ultrasound imaging of the liver. Multiple-breathing-cycle 4DMRIs of the thorax and abdominal 2D ultrasound images were acquired simultaneously for five volunteers. Deformation vector fields extracted from the 4DMRI, referred to as ground truth motion, were used to generate 4DCT(MRI) data sets of two lung cancer patients, resulting in 10 data sets with variable motion patterns. Given the 4DCT(MRI) and the corresponding ultrasound images as surrogate data, a patient-specific motion model was built. The model consists of an autoregressive model and Gaussian process regression for the temporal and spatial prediction, respectively. Two-field PBS plans were optimised on the reference CTs, and 4D dose calculations (4DDC) were used to simulate dose delivery for (a) unmitigated motion, (b) ideal 2D and 3D tracking (both beam adaption and 4DDC based on ground truth motion), and (c) realistic 2D and 3D tracking (beam adaption based on motion predictions, 4DDC on ground truth motion). Model-guided tracking retrieved clinically acceptable target dose homogeneity, as seen in a substantial reduction of the D5%-D95% compared to the non-mitigated simulation. Tracking in 2D and 3D resulted in a similar improvement of the dose homogeneity, as did ideal and realistic tracking simulations. In some cases, however, the tracked deliveries resulted in a shift towards higher or lower dose levels, leading to unacceptable target over- or under-coverage. The presented motion modelling framework was shown to be an accurate motion prediction tool for the use in proton beam tracking. Tracking alone, however, may not always effectively mitigate motion effects, making it necessary to combine it with other techniques such as rescanning.
Collapse
Affiliation(s)
- Miriam Krieger
- Center for Proton Therapy, Paul Scherrer Institute (PSI), Villigen PSI, Switzerland. Department of Physics, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Alina G, Krieger M, Jud C, Duetschler A, Salomir R, Bieri O, Bauman G, Nguyen D, Weber DC, Lomax AJ, Zhang Y, Cattin PC. Liver-ultrasound based motion modelling to estimate 4D dose distributions for lung tumours in scanned proton therapy. ACTA ACUST UNITED AC 2020; 65:235050. [DOI: 10.1088/1361-6560/abaa26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Four-dimensional carbon-ion pencil beam treatment planning comparison between robust optimization and range-adapted internal target volume for respiratory-gated liver and lung treatment. Phys Med 2020; 80:277-287. [PMID: 33246187 DOI: 10.1016/j.ejmp.2020.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/19/2020] [Accepted: 11/07/2020] [Indexed: 01/30/2023] Open
Abstract
We investigated the dose differences between robust optimization-based treatment planning (4DRO) and range-adapted internal target volume (rITV). We used 4DCT dataset of 20 lung cancer and 20 liver cancer patients, respectively, who had been treated with respiratory-gated carbon-ion pencil beam scanning therapy. 4DRO and rITV plans were created with the same clinical target volume (CTV) and organs at risk (OAR) contours. Four-dimensional dose distribution was calculated using deformable image registration. Dose metrics (e.g. D95, V20) were analyzed. Statistical significance was assessed by the Wilcoxon signed-rank test. For the lung cases, the mean CTV-D95 value for the rITV plan (=98.5%) was same as that for the 4DRO plan (=98.5%, P = 0.106), while the mean D95 value for the CTV + setup margin contour for the rITV plan (=98.2%) was higher than that for the 4DRO plan (95.2%, P < 0.001). For the liver cases, the mean CTV-D95 value for the rITV plan (=98.1%) was slightly lower than that for the 4DRO plan (=98.5%, P < 0.01), while the mean D95 value for the CTV + setup margin contour for the rITV plan (=98.0%) was higher than that for the 4DRO plan (94.1%, P < 0.001). For the doses to the organs at risk (OARs), the ipsilateral lung-V20/liver-V20 values for the rITV plan (=10.1%/19.7%) was significantly higher than that for the 4DRO plan (=8.6%/17.6, P < 0.001). Although the target coverage for 4DRO plan may be worse than that for rITV plan in the presence of the setup error, the 4DRO plan can improve OAR dose while preserving acceptable target dose coverage.
Collapse
|