1
|
Barkovich EJ, Cortes-Albornoz MC, Machado-Rivas F, Ferraciolli SF, Afacan O, Jaimes C. A closer look: pediatric neuroimaging at 7T. Pediatr Radiol 2025:10.1007/s00247-025-06231-4. [PMID: 40257498 DOI: 10.1007/s00247-025-06231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/22/2025]
Abstract
Although 7 Tesla (7T) field strength MR imaging offers higher signal-to-noise ratio and spatial resolution and improves certain types of tissue contrast, the incorporation of these systems into clinical pediatric neuroradiology has been relatively limited. Following a discussion of available hardware, current regulations, and pediatric specific safety considerations, this article briefly reviews the underlying principles behind the improved image quality attainable with certain techniques at 7T. Subsequently, specific high-performance sequences and techniques are highlighted including MP2RAGE, T2-weighted, and T2*-weighted sequences as well as MR angiography, all with sample images and comparison with standard field strengths. Finally, current clinical neuroradiological applications of 7T are explored with particular focus on focal epilepsy, multiple sclerosis, vascular diseases, and cerebral microbleeds. Ongoing and future innovations in hardware design and sequence development promise continued advancement in 7T neuroimaging and further applications to pediatric neuroradiology.
Collapse
Affiliation(s)
- Emil Jernstedt Barkovich
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA.
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA.
| | - Maria Camila Cortes-Albornoz
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Fedel Machado-Rivas
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Suely Fazio Ferraciolli
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Onur Afacan
- Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Camilo Jaimes
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| |
Collapse
|
2
|
Winter SF, Gardner MM, Karschnia P, Vaios EJ, Grassberger C, Bussière MR, Nikolic K, Pongpitakmetha T, Ehret F, Kaul D, Boehmerle W, Endres M, Shih HA, Parsons MW, Dietrich J. Unique brain injury patterns after proton vs photon radiotherapy for WHO grade 2-3 gliomas. Oncologist 2024; 29:e1748-e1761. [PMID: 39126664 PMCID: PMC11630789 DOI: 10.1093/oncolo/oyae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Central nervous system (CNS) injury following brain-directed radiotherapy remains a major challenge. Proton radiotherapy (PRT) minimizes radiation to healthy brain, potentially limiting sequelae. We characterized CNS radiotoxicity, including radiation-induced leukoencephalopathy (RIL), brain tissue necrosis (TN), and cerebral microbleeds (CMB), in glioma patients treated with PRT or photons (XRT). PATIENTS AND METHODS Thirty-four patients (19 male; median age 39.6 years) with WHO grade 2-3 gliomas treated with partial cranial radiotherapy (XRT [n = 17] vs PRT[n = 17]) were identified and matched by demographic/clinical criteria. Radiotoxicity was assessed longitudinally for 3 years post-radiotherapy via serial analysis of T2/FLAIR- (for RIL), contrast-enhanced T1- (for TN), and susceptibility (for CMB)-weighted MRI sequences. RIL was rated at whole-brain and hemispheric levels using a novel Fazekas scale-informed scoring system. RESULTS The scoring system proved reliable (ICC > 0.85). Both groups developed moderate-to-severe RIL (62%[XRT]; 71%[PRT]) within 3 years; however, XRT was associated with persistent RIL increases in the contralesional hemisphere, whereas contralesional hemispheric RIL plateaued with PRT at 1-year post-radiotherapy (t = 2.180; P = .037). TN rates were greater with PRT (6%[XRT] vs 18%[PRT]; P = ns). CMB prevalence (76%[XRT]; 71%[PRT]) and burden (mean #CMB: 4.0[XRT]; 4.2[PRT]) were similar; however, XRT correlated with greater contralesional hemispheric CMB burden (27%[XRT]; 17%[PRT]; X2 = 4.986; P = .026), whereas PRT-specific CMB clustered at the radiation field margin (X2 = 14.7; P = .002). CONCLUSIONS CNS radiotoxicity is common and progressive in glioma patients. Injury patterns suggest radiation modality-specificity as RIL, TN, and CMB exhibit unique spatiotemporal differences following XRT vs PRT, likely reflecting underlying dosimetric and radiobiological differences. Familiarity with such injury patterns is essential to improve patient management. Prospective studies are needed to validate these findings and assess their impacts on neurocognitive function.
Collapse
Affiliation(s)
- Sebastian F Winter
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117 Berlin, Germany
| | - Melissa M Gardner
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Philipp Karschnia
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Eugene J Vaios
- Department of Radiation Oncology, Duke Cancer Institute, Durham, NC 27710, United States
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Marc R Bussière
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Katarina Nikolic
- Department of Neurology, Universitätsklinikum St. Pölten, 3100 Sankt Pölten, Austria
| | - Thanakit Pongpitakmetha
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, 10330 Bangkok, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, 10330 Bangkok, Thailand
| | - Felix Ehret
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité – Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - David Kaul
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité – Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Wolfgang Boehmerle
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Matthias Endres
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Center for Stroke Research Berlin, 10117 Berlin, Germany
- ExcellenceCluster NeuroCure, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Partner Site Berlin, 10117 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10117 Berlin, Germany
- German Centre for Mental Health (DZPH), Partner Site Berlin, 10117 Berlin, Germany
| | - Helen A Shih
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Michael W Parsons
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Jorg Dietrich
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
3
|
Staudinger C, Dennler M, Körner M, Beckmann K, Kowalska ME, Meier V, Rohrer Bley C. Relationship between radiation dose and cerebral microbleed formation in dogs with intracranial tumors. J Vet Intern Med 2024; 38:3182-3192. [PMID: 39391956 PMCID: PMC11586539 DOI: 10.1111/jvim.17213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Cerebral microbleeds (CMBs) are a possible sequela in human brain tumor patients treated with radiation therapy (RT). No such association is reported in dogs. OBJECTIVES To investigate whether CMBs occur in dogs after radiotherapy, and if there is an association between number and dose, and an increase over time. ANIMALS Thirty-four client-owned dogs irradiated for primary intracranial neoplasia. ≥2 magnetic resonance imaging (MRI) scans including susceptibility-weighted imaging (SWI) were required. METHODS Retrospective, observational, single-center study. Cerebral microbleeds identified on 3 T SWI were counted within the entire brain, and within low- (<20 Gy), intermediate- (20-30 Gy), and high- (>30 Gy) dose regions. A generalized linear mixed-effects model was used to analyze the relationship between the CMBs count and the predictor variables (irradiation dose, time after treatment). RESULTS Median follow-up time was 12.6 months (range, 1.8-37.6 months). Eighty-three MR scans were performed. In 4/15 dogs (27%, 95% CI, 10%-52%) CMBs were present at baseline. ≥1 CMBs after RT were identified in 21/34 dogs (62%, 95% CI, 45%-77%). With each month, the number of CMBs increased by 14% (95% CI, 11%-16%; P < .001). The odds of developing CMBs in the high-dose region are 4.7 times (95% CI, 3.9-5.6; P < .001) greater compared with the low-dose region. CONCLUSION AND CLINICAL IMPORTANCE RT is 1 possible cause of CMBs formation in dogs. Cerebral microbleeds are most likely to occur in the peritumoral high-dose volume, to be chronic, and to increase in number over time. Their clinical relevance remains unknown.
Collapse
Affiliation(s)
- Chris Staudinger
- Clinic for Diagnostic Imaging, Department of Clinical Diagnostics and Services, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Matthias Dennler
- Clinic for Diagnostic Imaging, Department of Clinical Diagnostics and Services, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Maximilian Körner
- Division of Radiation Oncology, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Katrin Beckmann
- Division of Neurology, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Malwina E. Kowalska
- Section of Epidemiology, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Valeria Meier
- Division of Radiation Oncology, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Carla Rohrer Bley
- Division of Radiation Oncology, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
4
|
Celardo G, Scaffei E, Buchignani B, Donatelli G, Costagli M, Cristofani P, Canapicchi R, Pasquariello R, Tosetti M, Battini R, Biagi L. Case report: Exploring chemoradiotherapy-induced leukoencephalopathy with 7T imaging and quantitative susceptibility mapping. Front Neurol 2024; 15:1362704. [PMID: 38419703 PMCID: PMC10899325 DOI: 10.3389/fneur.2024.1362704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Chemotherapy and radiotherapy are widely used in the treatment of central nervous system tumors and acute lymphocytic leukemia even in the pediatric population. However, such treatments run the risk of a broad spectrum of cognitive and neurological deficits. Even though the correlation with cognitive decline is still not clear, neuroradiological defects linked to white matter injury and vasculopathies may be identified. Thanks to the use of 7T MRI it is possible to better define the vascular pattern of the brain lesions with the added advantage of identifying their characteristics and anatomical localization, which, however, are not evident with a conventional brain scan. Moreover, the use of Quantitative Susceptibility Mapping (QSM) makes it possible to discriminate between calcium deposits on vessels (chemo-radiation-induced) and hemoglobin deposition in radio-induced cavernomas, speculating, as a result, about the pathophysiology of iatrogenic brain damage. We describe the case of a 9 year-old boy with a T-type acute lymphoid leukemia who had previously been treated with polychemotherapy and high-dose RT. To better define the child's neuroradiological pattern, 7T MRI and QSM were performed in addition to conventional imaging examinations. Our case report suggests the potential usefulness of a QSM study to distinguish radio-induced vascular malformations from mineralizing microangiopathy.
Collapse
Affiliation(s)
- Gaetano Celardo
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Scaffei
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Bianca Buchignani
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Translational Research and of New Surgical and Medical Technologies Pisa University, Pisa, Italy
| | - Graziella Donatelli
- Department of Translational Research and of New Surgical and Medical Technologies Pisa University, Pisa, Italy
- Imago 7 Research Foundation, Pisa, Italy
| | - Mauro Costagli
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Paola Cristofani
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Raffaello Canapicchi
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Rosa Pasquariello
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Michela Tosetti
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Biagi
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
5
|
Yao J, Morrison MA, Lupo JM. Editorial for "Relationship Between Microstructural Alterations and Cognitive Decline After Whole-Brain Radiation Therapy for Brain Metastases: An Exploratory Whole-Brain MR Analysis Based on Neurite Orientation Dispersion and Density Imaging". J Magn Reson Imaging 2024; 59:253-254. [PMID: 37194681 DOI: 10.1002/jmri.28780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/18/2023] Open
Affiliation(s)
- Jingwen Yao
- Department of Radiological Sciences, UCLA, Los Angeles, California, USA
| | - Melanie A Morrison
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
- Department of Bioengineering at UCB and Department of Bioengineering and Therapeutic Sciences at UCSF, UCSF/UC Berkeley Graduate Program in Bioengineering, San Francisco, Berkeley, California, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
- Department of Bioengineering at UCB and Department of Bioengineering and Therapeutic Sciences at UCSF, UCSF/UC Berkeley Graduate Program in Bioengineering, San Francisco, Berkeley, California, USA
| |
Collapse
|
6
|
Nakkazi A, Forster D, Whitfield GA, Dyer DP, Dickie BR. A systematic review of normal tissue neurovascular unit damage following brain irradiation-Factors affecting damage severity and timing of effects. Neurooncol Adv 2024; 6:vdae098. [PMID: 39239570 PMCID: PMC11375288 DOI: 10.1093/noajnl/vdae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Background Radiotherapy is key in the treatment of primary and secondary brain tumors. However, normal tissue is inevitably irradiated, causing toxicity and contributing to cognitive dysfunction. The relative importance of vascular damage to cognitive decline is poorly understood. Here, we systematically review the evidence for radiation-induced damage to the entire neurovascular unit (NVU), particularly focusing on establishing the factors that influence damage severity, and timing and duration of vascular effects relative to effects on neural tissue. Methods Using PubMed and Web of Science, we searched preclinical and clinical literature published between January 1, 1970 and December 1, 2022 and evaluated factors influencing NVU damage severity and timing of NVU effects resulting from ionizing radiation. Results Seventy-two rodents, 4 canines, 1 rabbit, and 5 human studies met inclusion criteria. Radiation increased blood-brain barrier (BBB) permeability, reduced endothelial cell number and extracellular matrix proteoglycans, reduced tight junction proteins, upregulated cellular adhesion molecule expression, reduced activity of glucose and BBB efflux transporters and activated glial cells. In the brain parenchyma, increased metalloproteinases 2 and 9 levels, demyelination, cell death, and inhibited differentiation were observed. Effects on the vasculature and neural compartment were observed across acute, delayed, and late timepoints, and damage extent was higher with low linear energy transfer radiation, higher doses, lower dose rates, broader beams, and in the presence of a tumor. Conclusions Irradiation of normal brain tissue leads to widespread and varied impacts on the NVU. Data indicate that vascular damage is in most cases an early effect that does not quickly resolve. More studies are needed to confirm sequence of damages, and mechanisms that lead to cognitive dysfunction.
Collapse
Affiliation(s)
- Annet Nakkazi
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, The University of Manchester, Manchester, UK
- Faculty of Biology, Medicine, and Health, Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Duncan Forster
- Faculty of Biology, Medicine, and Health, Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Gillian A Whitfield
- Division of Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, The University of Manchester, Manchester, UK
| | - Ben R Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, The University of Manchester, Manchester, UK
- Faculty of Biology, Medicine, and Health, Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Özütemiz C, White M, Elvendahl W, Eryaman Y, Marjańska M, Metzger GJ, Patriat R, Kulesa J, Harel N, Watanabe Y, Grant A, Genovese G, Cayci Z. Use of a Commercial 7-T MRI Scanner for Clinical Brain Imaging: Indications, Protocols, Challenges, and Solutions-A Single-Center Experience. AJR Am J Roentgenol 2023; 221:788-804. [PMID: 37377363 PMCID: PMC10825876 DOI: 10.2214/ajr.23.29342] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The first commercially available 7-T MRI scanner (Magnetom Terra) was approved by the FDA in 2017 for clinical imaging of the brain and knee. After initial protocol development and sequence optimization efforts in volunteers, the 7-T system, in combination with an FDA-approved 1-channel transmit/32-channel receive array head coil, can now be routinely used for clinical brain MRI examinations. The ultrahigh field strength of 7-T MRI has the advantages of improved spatial resolution, increased SNR, and increased CNR but also introduces an array of new technical challenges. The purpose of this article is to describe an institutional experience with the use of the commercially available 7-T MRI scanner for routine clinical brain imaging. Specific clinical indications for which 7-T MRI may be useful for brain imaging include brain tumor evaluation with possible perfusion imaging and/or spectroscopy, radiotherapy planning; evaluation of multiple sclerosis and other demyelinating diseases, evaluation of Parkinson disease and guidance of deep brain stimulator placement, high-detail intracranial MRA and vessel wall imaging, evaluation of pituitary pathology, and evaluation of epilepsy. Detailed protocols, including sequence parameters, for these various indications are presented, and implementation challenges (including artifacts, safety, and side effects) and potential solutions are explored.
Collapse
Affiliation(s)
- Can Özütemiz
- Department of Radiology, University of Minnesota, 420 Delaware St SE, MMC 292, Minneapolis, MN 55455
| | - Matthew White
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Wendy Elvendahl
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Rémi Patriat
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Jeramy Kulesa
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Noam Harel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Yoichi Watanabe
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN
| | - Andrea Grant
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Guglielmo Genovese
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Zuzan Cayci
- Department of Radiology, University of Minnesota, 420 Delaware St SE, MMC 292, Minneapolis, MN 55455
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
8
|
Winter SF, Vaios EJ, Shih HA, Grassberger C, Parsons MW, Gardner MM, Ehret F, Kaul D, Boehmerle W, Endres M, Dietrich J. Mitigating Radiotoxicity in the Central Nervous System: Role of Proton Therapy. Curr Treat Options Oncol 2023; 24:1524-1549. [PMID: 37728819 DOI: 10.1007/s11864-023-01131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
OPINION STATEMENT Central nervous system (CNS) radiotoxicity remains a challenge in neuro-oncology. Dose distribution advantages of protons over photons have prompted increased use of brain-directed proton therapy. While well-recognized among pediatric populations, the benefit of proton therapy among adults with CNS malignancies remains controversial. We herein discuss the role of protons in mitigating late CNS radiotoxicities in adult patients. Despite limited clinical trials, evidence suggests toxicity profile advantages of protons over conventional radiotherapy, including retention of neurocognitive function and brain volume. Modelling studies predict superior dose conformality of protons versus state-of-the-art photon techniques reduces late radiogenic vasculopathies, endocrinopathies, and malignancies. Conversely, potentially higher brain tissue necrosis rates following proton therapy highlight a need to resolve uncertainties surrounding the impact of variable biological effectiveness of protons on dose distribution. Clinical trials comparing best photon and particle-based therapy are underway to establish whether protons substantially improve long-term treatment-related outcomes in adults with CNS malignancies.
Collapse
Affiliation(s)
- Sebastian F Winter
- Department of Neurology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117, Berlin, Germany.
| | - Eugene J Vaios
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael W Parsons
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Melissa M Gardner
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Felix Ehret
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117, Berlin, Germany
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Boehmerle
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Matthias Endres
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
- ExcellenceCluster NeuroCure, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Jorg Dietrich
- Department of Neurology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Genc O, Morrison MA, Villanueva-Meyer J, Burns B, Hess CP, Banerjee S, Lupo JM. DeepSWI: Using Deep Learning to Enhance Susceptibility Contrast on T2*-Weighted MRI. J Magn Reson Imaging 2023; 58:1200-1210. [PMID: 36733222 PMCID: PMC10443940 DOI: 10.1002/jmri.28622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Although susceptibility-weighted imaging (SWI) is the gold standard for visualizing cerebral microbleeds (CMBs) in the brain, the required phase data are not always available clinically. Having a postprocessing tool for generating SWI contrast from T2*-weighted magnitude images is therefore advantageous. PURPOSE To create synthetic SWI images from clinical T2*-weighted magnitude images using deep learning and evaluate the resulting images in terms of similarity to conventional SWI images and ability to detect radiation-associated CMBs. STUDY TYPE Retrospective. POPULATION A total of 145 adults (87 males/58 females; 43.9 years old) with radiation-associated CMBs were used to train (16,093 patches/121 patients), validate (484 patches/4 patients), and test (2420 patches/20 patients) our networks. FIELD STRENGTH/SEQUENCE 3D T2*-weighted, gradient-echo acquired at 3 T. ASSESSMENT Structural similarity index (SSIM), peak signal-to-noise-ratio (PSNR), normalized mean-squared-error (nMSE), CMB counts, and line profiles were compared among magnitude, original SWI, and synthetic SWI images. Three blinded raters (J.E.V.M., M.A.M., B.B. with 8-, 6-, and 4-years of experience, respectively) independently rated and classified test-set images. STATISTICAL TESTS Kruskall-Wallis and Wilcoxon signed-rank tests were used to compare SSIM, PSNR, nMSE, and CMB counts among magnitude, original SWI, and predicted synthetic SWI images. Intraclass correlation assessed interrater variability. P values <0.005 were considered statistically significant. RESULTS SSIM values of the predicted vs. original SWI (0.972, 0.995, 0.9864) were statistically significantly higher than that of the magnitude vs. original SWI (0.970, 0.994, 0.9861) for whole brain, vascular structures, and brain tissue regions, respectively; 67% (19/28) CMBs detected on original SWI images were also detected on the predicted SWI, whereas only 10 (36%) were detected on magnitude images. Overall image quality was similar between the synthetic and original SWI images, with less artifacts on the former. CONCLUSIONS This study demonstrated that deep learning can increase the susceptibility contrast present in neurovasculature and CMBs on T2*-weighted magnitude images, without residual susceptibility-induced artifacts. This may be useful for more accurately estimating CMB burden from magnitude images alone. EVIDENCE LEVEL 3. TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Ozan Genc
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
- Boğaziçi University, Istanbul, Turkey
| | - Melanie A. Morrison
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Javier Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, CA
| | | | - Christopher P. Hess
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
- Department of Neurology, University of California, San Francisco, CA
| | | | - Janine M. Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
- UCSF/UC Berkeley Graduate Group of Bioengineering, University of California, Berkeley and San Francisco, CA
| |
Collapse
|
10
|
Perez WD, Perez-Torres CJ. Neurocognitive and radiological changes after cranial radiation therapy in humans and rodents: a systematic review. Int J Radiat Biol 2023; 99:119-137. [PMID: 35511499 DOI: 10.1080/09553002.2022.2074167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Radiation-induced brain injury is a common long-term side effect for brain cancer survivors, leading to a reduced quality of life. Although there is growing research pertaining to this topic, the relationship between cognitive and radiologically detected lesions of radiation-induced brain injury in humans remains unclear. Furthermore, clinically translatable similarities between rodent models and human findings are also undefined. The objective of this review is to then identify the current evidence of radiation-induced brain injury in humans and to compare these findings to current rodent models of radiation-induced brain injury. METHODS This review includes an examination of the current literature on cognitive and radiological characteristics of radiation-induced brain injury in humans and rodents. A thorough search was conducted on PubMed, Web of Science, and Scopus to identify studies that performed cognitive assessments and magnetic resonance imaging techniques on either humans or rodents after cranial radiation therapy. A qualitative synthesis of the data is herein reported. RESULTS A total of 153 studies pertaining to cognitively or radiologically detected radiation injury of the brain are included in this systematic review; 106 studies provided data on humans while 47 studies provided data on rodents. Cognitive deficits in humans manifest across multiple domains after brain irradiation. Radiological evidence in humans highlight various neuroimaging-detectable changes post-irradiation. It is unclear, however, whether these findings reflect ground truth or research interests. Additionally, rodent models do not comprehensively reproduce characteristics of cognitive and radiological injury currently identified in humans. CONCLUSION This systematic review demonstrates that associations between and within cognitive and radiological radiation-induced brain injuries often rely on the type of assessment. Well-designed studies that evaluate the spectrum of potential injury are required for a precise understanding of not only the clinical significance of radiation-induced brain injury in humans, but also how to replicate injury development in pre-clinical models.
Collapse
Affiliation(s)
- Whitney D Perez
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Carlos J Perez-Torres
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA.,Academy of Integrated Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
11
|
Natsumeda M, Matsuzawa H, Watanabe M, Motohashi K, Gabdulkhaev R, Tsukamoto Y, Kanemaru Y, Watanabe J, Ogura R, Okada M, Kurabe S, Okamoto K, Kakita A, Igarashi H, Fujii Y. SWI by 7T MR Imaging for the Microscopic Imaging Diagnosis of Astrocytic and Oligodendroglial Tumors. AJNR Am J Neuroradiol 2022; 43:1575-1581. [PMID: 36229164 PMCID: PMC9731250 DOI: 10.3174/ajnr.a7666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 08/21/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND PURPOSE Despite advances in molecular imaging, preoperative diagnosis of astrocytomas and oligodendrogliomas can be challenging. In the present study, we assessed whether 7T SWI can be used to distinguish astrocytomas and oligodendrogliomas and whether malignant grading of gliomas is possible. MATERIALS AND METHODS 7T SWI was performed on 21 patients with gliomas before surgery with optimization for sharp visualization of the corticomedullary junction. Scoring for cortical thickening and displacement of medullary vessels, characteristic of oligodendroglial tumors, and cortical tapering, characteristic of astrocytic tumors, was performed. Additionally, characteristics of malignancy, including thickening of the medullary veins, the presence of microbleeds, and/or necrosis were scored. RESULTS Scoring for oligodendroglial (highest possible score, +3) and astrocytic (lowest score possible, -3) characteristics yielded a significant difference between astrocytomas and oligodendrogliomas (mean, -1.93 versus +1.71, P < .01). Scoring for malignancy was significantly different among the World Health Organization grade II (n = 10), grade III (n = 4), and grade IV (n = 7) tumors (mean, 0.20 versus 1.38 versus 2.79). Cortical thickening was observed significantly more frequently in oligodendrogliomas (P < .02), with a sensitivity of 71.4% and specificity of 85.7%; observation of tapering of the cortex was higher in astrocytomas (P < .01) with a sensitivity of 85.7% and specificity of 100%. CONCLUSIONS Visualization of the corticomedullary junction by 7T SWI was useful in distinguishing astrocytomas and oligodendrogliomas. Observation of tapering of the cortex was most sensitive and specific for diagnosing astrocytomas. Reliably predicting malignant grade was also possible by 7T SWI.
Collapse
Affiliation(s)
- M Natsumeda
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - H Matsuzawa
- Center for Integrated Human Brain Science (H.M., M.W., H.I.)
| | - M Watanabe
- Center for Integrated Human Brain Science (H.M., M.W., H.I.)
| | - K Motohashi
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | | | - Y Tsukamoto
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - Y Kanemaru
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - J Watanabe
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - R Ogura
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - M Okada
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - S Kurabe
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| | - K Okamoto
- Department of Translational Research (K.O.), Brain Research Institute, Niigata University, Niigata, Japan
| | - A Kakita
- Department of Pathology (R.G., A.K.)
| | - H Igarashi
- Center for Integrated Human Brain Science (H.M., M.W., H.I.)
| | - Y Fujii
- From the Department of Neurosurgery (M.N., K.M., Y.T., Y.K., J.W., R.O., M.O., S.K., Y.F.)
| |
Collapse
|
12
|
Morrison MA, Walter S, Mueller S, Felton E, Jakary A, Stoller S, Molinaro AM, Braunstein SE, Hess CP, Lupo JM. Functional network alterations in young brain tumor patients with radiotherapy-induced memory impairments and vascular injury. Front Neurol 2022; 13:921984. [PMID: 36172034 PMCID: PMC9511024 DOI: 10.3389/fneur.2022.921984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/22/2022] [Indexed: 12/05/2022] Open
Abstract
Background Cognitive impairment and cerebral microbleeds (CMBs) are long-term side-effects of cranial radiation therapy (RT). Previously we showed that memory function is disrupted in young patients and that the rate of cognitive decline correlates with CMB development. However, vascular injury alone cannot explain RT-induced cognitive decline. Here we use resting-state functional MRI (rsfMRI) to further investigate the complex mechanisms underlying memory impairment after RT. Methods Nineteen young patients previously treated with or without focal or whole-brain RT for a brain tumor underwent cognitive testing followed by 7T rsfMRI and susceptibility-weighted imaging for CMB detection. Global brain modularity and efficiency, and rsfMRI signal variability within the dorsal attention, salience, and frontoparietal networks were computed. We evaluated whether MR metrics could distinguish age- and sex-matched controls (N = 19) from patients and differentiate patients based on RT exposure and aggressiveness. We also related MR metrics with memory performance, CMB burden, and risk factors for cognitive decline after RT. Results Compared to controls, patients exhibited widespread hyperconnectivity, similar modularity, and significantly increased efficiency (p < 0.001) and network variability (p < 0.001). The most abnormal values were detected in patients treated with high dose whole-brain RT, having supratentorial tumors, and who did not undergo RT but had hydrocephalus. MR metrics and memory performance were correlated (R = 0.34–0.53), though MR metrics were more strongly related to risk factors for cognitive worsening and CMB burden with evidence of functional recovery. Conclusions MR metrics describing brain connectivity and variability represent promising candidate imaging biomarkers for monitoring of long-term cognitive side-effects after RT.
Collapse
Affiliation(s)
- Melanie A. Morrison
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Melanie A. Morrison
| | - Sadie Walter
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- College of Osteopathic Medicine, Pacific Northwest University of Health Sciences, Yakima, WA, United States
| | - Sabine Mueller
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Erin Felton
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Angela Jakary
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Schuyler Stoller
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Annette M. Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Steve E. Braunstein
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher P. Hess
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Janine M. Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
13
|
Kline C, Stoller S, Byer L, Samuel D, Lupo JM, Morrison MA, Rauschecker AM, Nedelec P, Faig W, Dubal DB, Fullerton HJ, Mueller S. An Integrated Analysis of Clinical, Genomic, and Imaging Features Reveals Predictors of Neurocognitive Outcomes in a Longitudinal Cohort of Pediatric Cancer Survivors, Enriched with CNS Tumors (Rad ART Pro). Front Oncol 2022; 12:874317. [PMID: 35814456 PMCID: PMC9259981 DOI: 10.3389/fonc.2022.874317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neurocognitive deficits in pediatric cancer survivors occur frequently; however, individual outcomes are unpredictable. We investigate clinical, genetic, and imaging predictors of neurocognition in pediatric cancer survivors, with a focus on survivors of central nervous system (CNS) tumors exposed to radiation. Methods One hundred eighteen patients with benign or malignant cancers (median diagnosis age: 7; 32% embryonal CNS tumors) were selected from an existing multi-institutional cohort (RadART Pro) if they had: 1) neurocognitive evaluation; 2) available DNA; 3) standard imaging. Utilizing RadART Pro, we collected clinical history, genomic sequencing, CNS imaging, and neurocognitive outcomes. We performed single nucleotide polymorphism (SNP) genotyping for candidate genes associated with neurocognition: COMT, BDNF, KIBRA, APOE, KLOTHO. Longitudinal neurocognitive testing were performed using validated computer-based CogState batteries. The imaging cohort was made of patients with available iron-sensitive (n = 28) and/or T2 FLAIR (n = 41) sequences. Cerebral microbleeds (CMB) were identified using a semi-automated algorithm. Volume of T2 FLAIR white matter lesions (WML) was measured using an automated method based on a convolutional neural network. Summary statistics were performed for patient characteristics, neurocognitive assessments, and imaging. Linear mixed effects and hierarchical models assessed patient characteristics and SNP relationship with neurocognition over time. Nested case-control analysis was performed to compare candidate gene carriers to non-carriers. Results CMB presence at baseline correlated with worse performance in 3 of 7 domains, including executive function. Higher baseline WML volumes correlated with worse performance in executive function and verbal learning. No candidate gene reliably predicted neurocognitive outcomes; however, APOE ϵ4 carriers trended toward worse neurocognitive function over time compared to other candidate genes and carried the highest odds of low neurocognitive performance across all domains (odds ratio 2.85, P=0.002). Hydrocephalus and seizures at diagnosis were the clinical characteristics most frequently associated with worse performance in neurocognitive domains (5 of 7 domains). Overall, executive function and verbal learning were the most frequently negatively impacted neurocognitive domains. Conclusion Presence of CMB, APOE ϵ4 carrier status, hydrocephalus, and seizures correlate with worse neurocognitive outcomes in pediatric cancer survivors, enriched with CNS tumors exposed to radiation. Ongoing research is underway to verify trends in larger cohorts.
Collapse
Affiliation(s)
- Cassie Kline
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Division of Child Neurology, Department of Neurology, University of California, San Francisco, United States
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Schuyler Stoller
- Division of Child Neurology, Department of Neurology, University of California, San Francisco, United States
| | - Lennox Byer
- UCSF School of Medicine, University of California, San Francisco, United States
| | - David Samuel
- Division of Pediatric Hematology/Oncology, Valley Children’s Hospital, Madera, CA, United States
| | - Janine M. Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Melanie A. Morrison
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Andreas M. Rauschecker
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Pierre Nedelec
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Walter Faig
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Dena B. Dubal
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Heather J. Fullerton
- Division of Child Neurology, Department of Neurology, University of California, San Francisco, United States
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Sabine Mueller
- Division of Child Neurology, Department of Neurology, University of California, San Francisco, United States
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, CA, United States
- *Correspondence: Sabine Mueller,
| |
Collapse
|
14
|
Relationship between 7T MR-angiography features of vascular injury and cognitive decline in young brain tumor patients treated with radiation therapy. J Neurooncol 2021; 153:143-152. [PMID: 33893923 DOI: 10.1007/s11060-021-03753-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Although radiation therapy (RT) is a common treatment for pediatric brain tumors, it is associated with detrimental long-term effects such as impaired cognition, vascular injury, and increased stroke risk. This study aimed to develop metrics that describe vascular injury and relate them to the presence of cerebral microbleeds (CMBs) and cognitive performance scores. METHODS Twenty-five young adult survivors of pediatric brain tumors treated with either whole-brain (n = 12), whole-ventricular (n = 7), or no RT (n = 6) underwent 7T MRI and neurocognitive testing. Simultaneously acquired MR angiography and susceptibility-weighted images were used to segment CMBs and vessels and quantify their radii and volume. RESULTS Patients treated with whole-brain RT had significantly lower arterial volumes (p = 0.003) and a higher proportion of smaller vessels (p = 0.003) compared to the whole-ventricular RT and non-irradiated control patients. Normalized arterial volume decreased with increasing CMB count (R = - 0.66, p = 0.003), and decreasing trends were observed with time since RT and at longitudinal follow-up. Global cognition and verbal memory significantly decreased with smaller normalized arterial volume (p ≤ 0.05). CONCLUSIONS Arterial volume is reduced with increasing CMB presence and is influenced by the total brain volume exposed to radiation. This work highlights the potential use of vascular-derived metrics as non-invasive markers of treatment-induced injury and cognitive impairment in pediatric brain tumor patients.
Collapse
|
15
|
Institoris A, Murphy-Royal C, Tarantini S, Yabluchanskiy A, Haidey JN, Csiszar A, Ungvari Z, Gordon GR. Whole brain irradiation in mice causes long-term impairment in astrocytic calcium signaling but preserves astrocyte-astrocyte coupling. GeroScience 2021; 43:197-212. [PMID: 33094399 PMCID: PMC8050172 DOI: 10.1007/s11357-020-00289-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/14/2020] [Indexed: 11/29/2022] Open
Abstract
Whole brain irradiation (WBI) therapy is an important treatment for brain metastases and potential microscopic malignancies. WBI promotes progressive cognitive dysfunction in over half of surviving patients, yet, the underlying mechanisms remain obscure. Astrocytes play critical roles in the regulation of neuronal activity, brain metabolism, and cerebral blood flow, and while neurons are considered radioresistant, astrocytes are sensitive to γ-irradiation. Hallmarks of astrocyte function are the ability to generate stimulus-induced intercellular Ca2+ signals and to move metabolic substrates through the connected astrocyte network. We tested the hypothesis that WBI-induced cognitive impairment associates with persistent impairment of astrocytic Ca2+ signaling and/or gap junctional coupling. Mice were subjected to a clinically relevant protocol of fractionated WBI, and 12 to 15 months after irradiation, we confirmed persistent cognitive impairment compared to controls. To test the integrity of astrocyte-to-astrocyte gap junctional coupling postWBI, astrocytes were loaded with Alexa-488-hydrazide by patch-based dye infusion, and the increase of fluorescence signal in neighboring astrocyte cell bodies was assessed with 2-photon microscopy in acute slices of the sensory-motor cortex. We found that WBI did not affect astrocyte-to-astrocyte gap junctional coupling. Astrocytic Ca2+ responses induced by bath administration of phenylephrine (detected with Rhod-2/AM) were also unaltered by WBI. However, an electrical stimulation protocol used in long-term potentiation (theta burst), revealed attenuated astrocyte Ca2+ responses in the astrocyte arbor and soma in WBI. Our data show that WBI causes a long-lasting decrement in synaptic-evoked astrocyte Ca2+ signals 12-15 months postirradiation, which may be an important contributor to cognitive decline seen after WBI.
Collapse
Affiliation(s)
- Adam Institoris
- Department of Physiology and Pharmacology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ciaran Murphy-Royal
- Department of Physiology and Pharmacology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Stefano Tarantini
- Department of Biochemistry and Molecular Biology, Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Department of Biochemistry and Molecular Biology, Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jordan N Haidey
- Department of Physiology and Pharmacology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anna Csiszar
- Department of Biochemistry and Molecular Biology, Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Department of Biochemistry and Molecular Biology, Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Grant R Gordon
- Department of Physiology and Pharmacology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|