1
|
Beukema JC, Haveman JW, Langendijk JA, Oldehinkel E, van den Bergh ACM, de Haan JJ, van Melle JP, van Luijk P, Muijs CT. Blood biomarkers for cardiac damage during and after radiotherapy for esophageal cancer: A prospective cohort study. Radiother Oncol 2024; 200:110479. [PMID: 39154840 DOI: 10.1016/j.radonc.2024.110479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE The aim of this study was to test the hypothesis that the levels of High Sensitive Troponin T (HS-TNT) and N-terminal Brain Natriuretic Peptide (NT-ProBNP) increase after radiation therapy in a dose dependent way and are predictive for clinical cardiac events. MATERIALS AND METHODS Blood samples during and after radiotherapy of 87 esophageal cancer patients were analysed regarding the course of HS-TNT and NT-ProBNP levels and their relationship with clinical toxicity endpoints and radiation dose volume parameters. RESULTS HS-TNT values at the end of treatment correlated with the mean heart dose (p = 0.02), whereas the rise of NT-ProBNP correlated with the mean lung dose (p = 0.01). Furthermore, the course of both HS-TNT (p < 0.001) and NT-ProBNP (p < 0.01) levels were significantly different for patients who developed new cardiac events as opposed to those without new cardiac events. CONCLUSION Significant correlations were found for both biomarkers with radiation dose and clinical toxicity endpoints after treatment. Therefore, these markers might be of additional value in NTCP models for cardiac events and might help us unravelling the mechanisms behind these toxicity endpoints.
Collapse
Affiliation(s)
- Jannet C Beukema
- Department of Radiation oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Jan-Willem Haveman
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Johannes A Langendijk
- Department of Radiation oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Edwin Oldehinkel
- Department of Radiation oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Jacco J de Haan
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joost P van Melle
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Peter van Luijk
- Department of Radiation oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Christina T Muijs
- Department of Radiation oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Wong R, Anderson B, Bashir B, Bateman J, Chalchal H, Davies J, Dehmoobed A, Geller G, Ghose A, Gill S, Gordon V, Green S, Hebbard P, Iqbal M, Ji S, Karachiwala H, Kidane B, Kim C, Kosyachkova E, Krahn M, Krishnan T, Kristjanson M, Lee S, Lee-Ying R, Lelond S, Liu HW, Meyers D, Mulder K, Paul J, Planincic E. Report from the 25th Annual Western Canadian Gastrointestinal Cancer Consensus Conference on Gastric and Gastroesophageal Cancers, Winnipeg, Manitoba, 26-27 October 2023. Curr Oncol 2024; 31:5987-6006. [PMID: 39451751 PMCID: PMC11505746 DOI: 10.3390/curroncol31100447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
The 25th Annual Western Canadian Gastrointestinal Cancer Consensus Conference (WCGCCC) was held in Winnipeg, Manitoba, on 26-27 October 2023. The WCGCCC is an interactive multidisciplinary conference that was attended by healthcare professionals from across Western Canada (British Columbia, Alberta, and Manitoba) who are involved in the care of patients with gastrointestinal cancer. Surgical, medical, and radiation oncologists; pathologists; oncology nurses; pharmacists; and a family physician in oncology (FPO) participated in presentation and discussion sessions for the purpose of developing the recommendations presented here. This consensus statement addresses current issues in the management of gastroesophageal cancers.
Collapse
Affiliation(s)
- Ralph Wong
- CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (B.B.); (A.D.); (V.G.); (S.G.); (P.H.); (M.K.); (M.K.); (S.L.); (D.M.); (E.P.); (J.P.)
| | - Brady Anderson
- Western Manitoba Cancer Center, Brandon, MB R7A 5M8, Canada;
| | - Bashir Bashir
- CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (B.B.); (A.D.); (V.G.); (S.G.); (P.H.); (M.K.); (M.K.); (S.L.); (D.M.); (E.P.); (J.P.)
| | | | - Haji Chalchal
- Allan Blair Cancer Centre, Regina, SK S4T 7T1, Canada;
| | - Janine Davies
- BC Cancer Centre, Vancouver, BC V5Z 4E6, Canada; (J.D.); (S.G.); (T.K.)
| | - Anahita Dehmoobed
- CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (B.B.); (A.D.); (V.G.); (S.G.); (P.H.); (M.K.); (M.K.); (S.L.); (D.M.); (E.P.); (J.P.)
| | | | - Abhijit Ghose
- Chinook Regional Hospital, Lethbridge, AB T1J 1W5, Canada
| | - Sharlene Gill
- BC Cancer Centre, Vancouver, BC V5Z 4E6, Canada; (J.D.); (S.G.); (T.K.)
| | - Vallerie Gordon
- CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (B.B.); (A.D.); (V.G.); (S.G.); (P.H.); (M.K.); (M.K.); (S.L.); (D.M.); (E.P.); (J.P.)
| | - Susan Green
- CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (B.B.); (A.D.); (V.G.); (S.G.); (P.H.); (M.K.); (M.K.); (S.L.); (D.M.); (E.P.); (J.P.)
| | - Pamela Hebbard
- CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (B.B.); (A.D.); (V.G.); (S.G.); (P.H.); (M.K.); (M.K.); (S.L.); (D.M.); (E.P.); (J.P.)
| | | | - Shuying Ji
- Shared Health Manitoba, Winnipeg, MB R2N 0E2, Canada;
| | - Hatim Karachiwala
- Tom Baker Cancer Centre, Calgary, AB T2N 4N2, Canada; (H.K.); (R.L.-Y.)
| | - Biniam Kidane
- Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3A 1R9, Canada;
| | - Christina Kim
- CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (B.B.); (A.D.); (V.G.); (S.G.); (P.H.); (M.K.); (M.K.); (S.L.); (D.M.); (E.P.); (J.P.)
| | | | - Marianne Krahn
- CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (B.B.); (A.D.); (V.G.); (S.G.); (P.H.); (M.K.); (M.K.); (S.L.); (D.M.); (E.P.); (J.P.)
| | - Tharani Krishnan
- BC Cancer Centre, Vancouver, BC V5Z 4E6, Canada; (J.D.); (S.G.); (T.K.)
| | - Mark Kristjanson
- CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (B.B.); (A.D.); (V.G.); (S.G.); (P.H.); (M.K.); (M.K.); (S.L.); (D.M.); (E.P.); (J.P.)
| | - Sangjune Lee
- Department of Oncology, University of Calgary, Calgary, AB T2N 4N2, Canada;
| | - Richard Lee-Ying
- Tom Baker Cancer Centre, Calgary, AB T2N 4N2, Canada; (H.K.); (R.L.-Y.)
| | - Stephanie Lelond
- CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (B.B.); (A.D.); (V.G.); (S.G.); (P.H.); (M.K.); (M.K.); (S.L.); (D.M.); (E.P.); (J.P.)
| | - Hong-Wei Liu
- Central Alberta Cancer Center, Red Deer, AB T4N 6R2, Canada;
| | - Daniel Meyers
- CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (B.B.); (A.D.); (V.G.); (S.G.); (P.H.); (M.K.); (M.K.); (S.L.); (D.M.); (E.P.); (J.P.)
| | - Karen Mulder
- Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada;
| | - James Paul
- CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (B.B.); (A.D.); (V.G.); (S.G.); (P.H.); (M.K.); (M.K.); (S.L.); (D.M.); (E.P.); (J.P.)
| | - Elvira Planincic
- CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (B.B.); (A.D.); (V.G.); (S.G.); (P.H.); (M.K.); (M.K.); (S.L.); (D.M.); (E.P.); (J.P.)
| |
Collapse
|
3
|
Populaire P, Marini B, Poels K, Svensson S, Sterpin E, Fredriksson A, Haustermans K. Autodelineation methods in a simulated fully automated proton therapy workflow for esophageal cancer. Phys Imaging Radiat Oncol 2024; 32:100646. [PMID: 39381611 PMCID: PMC11460496 DOI: 10.1016/j.phro.2024.100646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Background and purpose Proton Online Adaptive RadioTherapy (ProtOnART) harnesses the dosimetric advantage of protons and immediately acts upon anatomical changes. Here, we simulate the clinical application of delineation and planning within a ProtOnART-workflow for esophageal cancer. We aim to identify the most appropriate technique for autodelineation and evaluate full automation by replanning on autodelineated contours. Materials and methods We evaluated 15 patients who started treatment between 11-2022 and 01-2024, undergoing baseline and three repeat computed tomography (CT) scans in treatment position. Quantitative and qualitative evaluations compared different autodelineation methods. For Organs-at-risk (OAR) deep learning segmentation (DLS), rigid and deformable propagation from baseline to repeat CT-scans were considered. For the clinical target volume (CTV), rigid and three deformable propagation methods (default, heart as controlling structure and with focus region) were evaluated. Adaptive treatment plans with 7 mm (ATP7mm) and 3 mm (ATP3mm) setup robustness were generated using best-performing autodelineated contours. Clinical acceptance of ATPs was evaluated using goals encompassing ground-truth CTV-coverage and OAR-dose. Results Deformation was preferred for autodelineation of heart, lungs and spinal cord. DLS was preferred for all other OARs. For CTV, deformation with focus region was the preferred method although the difference with other deformation methods was small. Nominal ATPs passed evaluation goals for 87 % of ATP7mm and 67 % of ATP3mm. This dropped to respectively 2 % and 29 % after robust evaluation. Insufficient CTV-coverage was the main reason for ATP-rejection. Conclusion Autodelineation aids a ProtOnART-workflow for esophageal cancer. Currently available tools regularly require manual annotations to generate clinically acceptable ATPs.
Collapse
Affiliation(s)
- Pieter Populaire
- KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
- University Hospital Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - Beatrice Marini
- Humanitas University, Department of Biomedical Sciences, Milan, Italy
- Humanitas Research Hospital IRCCS, Department of Radiotherapy and Radiosurgery, Milan, Italy
| | - Kenneth Poels
- University Hospital Leuven, Department of Radiation Oncology, Leuven, Belgium
| | | | - Edmond Sterpin
- KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, UCLouvain, Belgium
| | | | - Karin Haustermans
- KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
- University Hospital Leuven, Department of Radiation Oncology, Leuven, Belgium
| |
Collapse
|
4
|
Tsui T, Podgorsak A, Roeske JC, Small W, Refaat T, Kang H. Geometric and dosimetric evaluation for breast and regional nodal auto-segmentation structures. J Appl Clin Med Phys 2024; 25:e14461. [PMID: 39092893 PMCID: PMC11466470 DOI: 10.1002/acm2.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/09/2024] [Accepted: 06/23/2024] [Indexed: 08/04/2024] Open
Abstract
The accuracy of artificial intelligence (AI) generated contours for intact-breast and post-mastectomy radiotherapy plans was evaluated. Geometric and dosimetric comparisons were performed between auto-contours (ACs) and manual-contours (MCs) produced by physicians for target structures. Breast and regional nodal structures were manually delineated on 66 breast cancer patients. ACs were retrospectively generated. The characteristics of the breast/post-mastectomy chestwall (CW) and regional nodal structures (axillary [AxN], supraclavicular [SC], internal mammary [IM]) were geometrically evaluated by Dice similarity coefficient (DSC), mean surface distance, and Hausdorff Distance. The structures were also evaluated dosimetrically by superimposing the MC clinically delivered plans onto the ACs to assess the impact of utilizing ACs with target dose (Vx%) evaluation. Positive geometric correlations between volume and DSC for intact-breast, AxN, and CW were observed. Little or anti correlations between volume and DSC for IM and SC were shown. For intact-breast plans, insignificant dosimetric differences between ACs and MCs were observed for AxNV95% (p = 0.17) and SCV95% (p = 0.16), while IMNV90% ACs and MCs were significantly different. The average V95% for intact-breast MCs (98.4%) and ACs (97.1%) were comparable but statistically different (p = 0.02). For post-mastectomy plans, AxNV95% (p = 0.35) and SCV95% (p = 0.08) were consistent between ACs and MCs, while IMNV90% was significantly different. Additionally, 94.1% of AC-breasts met ΔV95% variation <5% when DSC > 0.7. However, only 62.5% AC-CWs achieved the same metrics, despite AC-CWV95% (p = 0.43) being statistically insignificant. The AC intact-breast structure was dosimetrically similar to MCs. The AC AxN and SC may require manual adjustments. Careful review should be performed for AC post-mastectomy CW and IMN before treatment planning. The findings of this study may guide the clinical decision-making process for the utilization of AI-driven ACs for intact-breast and post-mastectomy plans. Before clinical implementation of this auto-segmentation software, an in-depth assessment of agreement with each local facilities MCs is needed.
Collapse
Affiliation(s)
- Tiffany Tsui
- Department of Radiation OncologyLoyola University ChicagoStritch School of MedicineMaywoodIllinoisUSA
- Department of Radiation OncologyCardinal Bernard Cancer CenterMaywoodIllinoisUSA
| | - Alexander Podgorsak
- Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - John C. Roeske
- Department of Radiation OncologyLoyola University ChicagoStritch School of MedicineMaywoodIllinoisUSA
- Department of Radiation OncologyCardinal Bernard Cancer CenterMaywoodIllinoisUSA
| | - William Small
- Department of Radiation OncologyLoyola University ChicagoStritch School of MedicineMaywoodIllinoisUSA
- Department of Radiation OncologyCardinal Bernard Cancer CenterMaywoodIllinoisUSA
| | - Tamer Refaat
- Department of Radiation OncologyLoyola University ChicagoStritch School of MedicineMaywoodIllinoisUSA
- Department of Radiation OncologyCardinal Bernard Cancer CenterMaywoodIllinoisUSA
| | - Hyejoo Kang
- Department of Radiation OncologyLoyola University ChicagoStritch School of MedicineMaywoodIllinoisUSA
- Department of Radiation OncologyCardinal Bernard Cancer CenterMaywoodIllinoisUSA
| |
Collapse
|
5
|
Han D, Dong J, Wang Q, Li B, Liu J, Liu H, Qiu B, Zhang W, Yang H, Shen W, Zhang Y, Zhu X, Wang Y, Wu L, Sun H, Huang W. Neoadjuvant radiation target volume definition in esophageal squamous cell cancer: a multicenter recommendations from Chinese experts. BMC Cancer 2024; 24:1086. [PMID: 39223503 PMCID: PMC11367793 DOI: 10.1186/s12885-024-12825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This study aimed to establish a consensus on the delineation of target volumes for neoadjuvant radiation therapy (nRT) in esophageal squamous cell carcinoma (ESCC) within China. METHODS From February 2020 to June 2021, nine ESCC patients who received nRT were retrospectively selected from Sun Yat-sen University Cancer Center and Shandong Cancer Hospital. A panel from eight cancer radiotherapy centers performed two rounds of nRT target volume delineation for these patients: the first round for cases 1-6 and the second for cases 7-9. Online meetings were held after each delineation round to discuss findings. The consistency of delineations across centers was compared using mean undirected Hausdorff distances (Hmean), dice similarity coefficients (DSC), and total volumes, analyzed with the Mann-Whitney U test. RESULTS The second round of delineations showed improved consistency across centers (total clinical target volume (CTVtotal): mean DSC = 0.76-0.81; mean Hmean = 2.11-3.14 cm) compared to the first round (CTVtotal: mean DSC = 0.63-0.64; mean Hmean = 5.66-7.34 cm; DSC and Hmean: P < 0.050 between rounds), leading to the formation of a consensus and an atlas for ESCC nRT target volume delineation. A proposal was reached through evaluating target volume delineations, analyzing questionnaire survey outcomes, and reviewing pertinent literature. CONCLUSIONS We have developed guidelines and an atlas for target volume delineation in nRT therapy for ESCC in China. These resources are designed to facilitate more consistent delineation of target volumes in both clinical practice and clinical trials.
Collapse
Affiliation(s)
- Dan Han
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440, Jiyan Road, Huaiyin distract, Jinan, 250117, Shandong Province, China
| | - Jinling Dong
- Department of Oncology, Yankuang New Journey General Hospital, Zoucheng, 273500, China
| | - Qifeng Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440, Jiyan Road, Huaiyin distract, Jinan, 250117, Shandong Province, China
| | - Jun Liu
- Department of Radiation Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200050, China
| | - Hui Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bo Qiu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wencheng Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hong Yang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Wenbin Shen
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, China
| | - Yaowen Zhang
- Department sixth of Radiotherapy, Anyang Cancer Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, 455001, China
| | - Xiangzhi Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, China
| | - Yi Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Lei Wu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Hongfu Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440, Jiyan Road, Huaiyin distract, Jinan, 250117, Shandong Province, China
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440, Jiyan Road, Huaiyin distract, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
6
|
Canters R, van der Klugt K, Trier Taasti V, Buijsen J, Ta B, Steenbakkers I, Houben R, Vilches-Freixas G, Berbee M. Robustness of intensity modulated proton treatment of esophageal cancer for anatomical changes and breathing motion. Radiother Oncol 2024; 198:110409. [PMID: 38917884 DOI: 10.1016/j.radonc.2024.110409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/26/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND AND PURPOSE In this study, we assessed the robustness of intensity modulated proton therapy (IMPT) in esophageal cancer for anatomical variations during treatment. METHODS The first sixty esophageal cancer patients, treated clinically with chemoradiotherapy were included. The treatment planning strategy was based on an internal target volume (ITV) approach, where the ITV was created from the clinical target volumes (CTVs) delineated on all phases of a 4DCT. For optimization, a 3 mm isotropic margin was added to the ITV, combined with robust optimization using 5 mm setup and 3 % range uncertainty. Each patient received weekly repeat CTs (reCTs). Robust plan re-evaluation on all reCTs, and a robust dose summation was performed. To assess the factors influencing ITV coverage, a multivariate linear regression analysis was performed. Additionally, clinical adaptations were evaluated. RESULTS The target coverage was adequate (ITV V94%>98 % on the robust voxel-wise minimum dose) on most reCTs (91 %), and on the summed dose in 92 % of patients. Significant predictors for ITV coverage in the multivariate analysis were diaphragm baseline shift and water equivalent depth (WED) of the ITV in the beam direction. Underdosage of the ITV mainly occurred in week 1 and 4, leading to treatment adaptation of eight patients, all on the first reCT. CONCLUSION Our IMPT treatment of esophageal cancer is robust for anatomical variations. Adaptation appears to be most effective in the first week of treatment. Diaphragm baseline shifts and WED are predictive factors for ITV underdosage, and should be incorporated in an adaptation protocol.
Collapse
Affiliation(s)
- Richard Canters
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Kim van der Klugt
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Vicki Trier Taasti
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands; Aarhus University, Danish Centre for Particle Therapy, Denmark
| | - Jeroen Buijsen
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Bastiaan Ta
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Inge Steenbakkers
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ruud Houben
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gloria Vilches-Freixas
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Maaike Berbee
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
7
|
Fiorino C, Palumbo D, Mori M, Palazzo G, Pellegrini AE, Albarello L, Belardo A, Canevari C, Cossu A, Damascelli A, Elmore U, Mazza E, Pavarini M, Passoni P, Puccetti F, Slim N, Steidler S, Del Vecchio A, Di Muzio NG, Chiti A, Rosati R, De Cobelli F. Early regression index (ERI) on MR images as response predictor in esophageal cancer treated with neoadjuvant chemo-radiotherapy: Interim analysis of the prospective ESCAPE trial. Radiother Oncol 2024; 194:110160. [PMID: 38369025 DOI: 10.1016/j.radonc.2024.110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
PURPOSE The early regression index (ERI) predicts treatment response in rectal cancer patients. Aim of current study was to prospectively assess tumor response to neoadjuvant chemo-radiotherapy (nCRT) of locally advanced esophageal cancer using ERI, based on MRI. MATERIAL AND METHODS From January 2020 to May 2023, 30 patients with esophageal cancer were enrolled in a prospective study (ESCAPE). PET-MRI was performed: i) before nCRT (tpre); ii) at mid-radiotherapy, tmid; iii) after nCRT, 2-6 weeks before surgery (tpost); nCRT delivered 41.4 Gy/23fr with concurrent carboplatin and paclitaxel. For patients that skipped surgery, complete clinical response (cCR) was assessed if patients showed no local relapse after 18 months; patients with pathological complete response (pCR) or with cCR were considered as complete responders (pCR + cCR). GTV volumes were delineated by two observers (Vpre, Vmid, Vpost) on T2w MRI: ERI and other volume regression parameters at tmid and tpost were tested as predictors of pCR + cCR. RESULTS Complete data of 25 patients were available at the time of the analysis: 3/25 with complete response at imaging refused surgery and 2/3 were cCR; in total, 10/25 patients showed pCR + cCR (pCR = 8/22). Both ERImid and ERIpost classified pCR + cCR patients, with ERImid showing better performance (AUC:0.78, p = 0.014): A two-variable logistic model combining ERImid and Vpre improved performances (AUC:0.93, p < 0.0001). Inter-observer variability in contouring GTV did not affect the results. CONCLUSIONS Despite the limited numbers, interim analysis of ESCAPE study suggests ERI as a potential predictor of complete response after nCRT for esophageal cancer. Further validation on larger populations is warranted.
Collapse
Affiliation(s)
- C Fiorino
- Medical Physics, IRCCS San Raffaele Hospital, Milano, Italy.
| | - D Palumbo
- Radiology, IRCCS San Raffaele Hospital, Milano, Italy
| | - M Mori
- Medical Physics, IRCCS San Raffaele Hospital, Milano, Italy
| | - G Palazzo
- Medical Physics, IRCCS San Raffaele Hospital, Milano, Italy
| | | | - L Albarello
- Pathology, IRCCS San Raffaele Hospital, Milano, Italy
| | - A Belardo
- Medical Physics, IRCCS San Raffaele Hospital, Milano, Italy
| | - C Canevari
- Nuclear Medicine, IRCCS San Raffaele Hospital, Milano, Italy
| | - A Cossu
- Gastric Surgery, IRCCS San Raffaele Hospital, Milano, Italy
| | - A Damascelli
- Radiology, IRCCS San Raffaele Hospital, Milano, Italy
| | - U Elmore
- Gastric Surgery, IRCCS San Raffaele Hospital, Milano, Italy
| | - E Mazza
- Oncology, IRCCS San Raffaele Hospital, Milano, Italy
| | - M Pavarini
- Medical Physics, IRCCS San Raffaele Hospital, Milano, Italy
| | - P Passoni
- Radiotherapy, IRCCS San Raffaele Hospital, Milano, Italy
| | - F Puccetti
- Gastric Surgery, IRCCS San Raffaele Hospital, Milano, Italy
| | - N Slim
- Radiotherapy, IRCCS San Raffaele Hospital, Milano, Italy
| | - S Steidler
- Radiology, IRCCS San Raffaele Hospital, Milano, Italy
| | - A Del Vecchio
- Medical Physics, IRCCS San Raffaele Hospital, Milano, Italy
| | - N G Di Muzio
- Radiotherapy, IRCCS San Raffaele Hospital, Milano, Italy; Vita-Salute University, Milano, Italy
| | - A Chiti
- Nuclear Medicine, IRCCS San Raffaele Hospital, Milano, Italy; Vita-Salute University, Milano, Italy
| | - R Rosati
- Gastric Surgery, IRCCS San Raffaele Hospital, Milano, Italy; Vita-Salute University, Milano, Italy
| | - F De Cobelli
- Radiology, IRCCS San Raffaele Hospital, Milano, Italy; Vita-Salute University, Milano, Italy
| |
Collapse
|
8
|
Wegen S, Claus K, Linde P, Rosenbrock J, Trommer M, Zander T, Tuchscherer A, Bruns C, Schlößer HA, Schröder W, Eich ML, Fischer T, Schomäcker K, Drzezga A, Kobe C, Roth KS, Weindler JJ. Impact of FAPI-46/dual-tracer PET/CT imaging on radiotherapeutic management in esophageal cancer. Radiat Oncol 2024; 19:44. [PMID: 38575990 PMCID: PMC10993448 DOI: 10.1186/s13014-024-02430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Fibroblast activation protein (FAP) is expressed in the tumor microenvironment (TME) of various cancers. In our analysis, we describe the impact of dual-tracer imaging with Gallium-68-radiolabeled inhibitors of FAP (FAPI-46-PET/CT) and fluorodeoxy-D-glucose (FDG-PET/CT) on the radiotherapeutic management of primary esophageal cancer (EC). METHODS 32 patients with EC, who are scheduled for chemoradiation, received FDG and FAPI-46 PET/CT on the same day (dual-tracer protocol, 71%) or on two separate days (29%) We compared functional tumor volumes (FTVs), gross tumor volumes (GTVs) and tumor stages before and after PET-imaging. Changes in treatment were categorized as "minor" (adaption of radiation field) or "major" (change of treatment regimen). Immunohistochemistry (IHC) staining for FAP was performed in all patients with available tissue. RESULTS Primary tumor was detected in all FAPI-46/dual-tracer scans and in 30/32 (93%) of FDG scans. Compared to the initial staging CT scan, 12/32 patients (38%) were upstaged in nodal status after the combination of FDG and FAPI-46 PET scans. Two lymph node metastases were only visible in FAPI-46/dual-tracer. New distant metastasis was observed in 2/32 (6%) patients following FAPI-4 -PET/CT. Our findings led to larger RT fields ("minor change") in 5/32 patients (16%) and changed treatment regimen ("major change") in 3/32 patients after FAPI-46/dual-tracer PET/CT. GTVs were larger in FAPI-46/dual-tracer scans compared to FDG-PET/CT (mean 99.0 vs. 80.3 ml, respectively (p < 0.001)) with similar results for nuclear medical FTVs. IHC revealed heterogenous FAP-expression in all specimens (mean H-score: 36.3 (SD 24.6)) without correlation between FAP expression in IHC and FAPI tracer uptake in PET/CT. CONCLUSION We report first data on the use of PET with FAPI-46 for patients with EC, who are scheduled to receive RT. Tumor uptake was high and not depending on FAP expression in TME. Further, FAPI-46/dual-tracer PET had relevant impact on management in this setting. Our data calls for prospective evaluation of FAPI-46/dual-tracer PET to improve clinical outcomes of EC.
Collapse
Affiliation(s)
- Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.
| | - Karina Claus
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Philipp Linde
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Johannes Rosenbrock
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Maike Trommer
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness & Research Centre, Austin Health, Melbourne, Australia
| | - Thomas Zander
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Armin Tuchscherer
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Christiane Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine, with University Hospital Cologne, Cologne, Germany
| | - Hans Anton Schlößer
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine, with University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wolfgang Schröder
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine, with University Hospital Cologne, Cologne, Germany
| | - Marie-Lisa Eich
- Institute of Pathology, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Thomas Fischer
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Klaus Schomäcker
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine, Molecular Organization of the Brain, Forschungszentrum Jülich, INM-2, Cologne, Germany
| | - Carsten Kobe
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Katrin Sabine Roth
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jasmin Josefine Weindler
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Berbée M, Muijs CT, Schuit E. Response to letter to the editor regarding "External validation of a lung cancer-based prediction model for two-year mortality in esophageal cancer patient cohorts" by M. Berbée et al. Radiother Oncol 2024; 193:110176. [PMID: 38373573 DOI: 10.1016/j.radonc.2024.110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Affiliation(s)
- M Berbée
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - C T Muijs
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - E Schuit
- Department of Epidemiology & Health Economics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, The Netherlands
| |
Collapse
|
10
|
Populaire P, Defraene G, Haustermans K. Letter to the editor regarding "External validation of a lung cancer-based prediction model for two-year mortality in esophageal cancer patient cohorts" by M. Berbée et al. Radiother Oncol 2024; 193:110175. [PMID: 38417534 DOI: 10.1016/j.radonc.2024.110175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/07/2024] [Indexed: 03/01/2024]
Affiliation(s)
- P Populaire
- UZ Leuven, Department of Radiation Oncology, Leuven, Belgium; KU Leuven, Laboratory of Experimental Radiotherapy, Department of Oncology, Leuven, Belgium
| | - G Defraene
- KU Leuven, Laboratory of Experimental Radiotherapy, Department of Oncology, Leuven, Belgium
| | - K Haustermans
- UZ Leuven, Department of Radiation Oncology, Leuven, Belgium; KU Leuven, Laboratory of Experimental Radiotherapy, Department of Oncology, Leuven, Belgium.
| |
Collapse
|
11
|
Wang X, Gong G, Sun Q, Meng X. Prediction of pCR based on clinical-radiomic model in patients with locally advanced ESCC treated with neoadjuvant immunotherapy plus chemoradiotherapy. Front Oncol 2024; 14:1350914. [PMID: 38571506 PMCID: PMC10989074 DOI: 10.3389/fonc.2024.1350914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
Background The primary objective of this research is to devise a model to predict the pathologic complete response in esophageal squamous cell carcinoma (ESCC) patients undergoing neoadjuvant immunotherapy combined with chemoradiotherapy (nICRT). Methods We retrospectively analyzed data from 60 ESCC patients who received nICRT between 2019 and 2023. These patients were divided into two cohorts: pCR-group (N = 28) and non-pCR group (N = 32). Radiomic features, discerned from the primary tumor region across plain, arterial, and venous phases of CT, and pertinent laboratory data were documented at two intervals: pre-treatment and preoperation. Concurrently, related clinical data was amassed. Feature selection was facilitated using the Extreme Gradient Boosting (XGBoost) algorithm, with model validation conducted via fivefold cross-validation. The model's discriminating capability was evaluated using the area under the receiver operating characteristic curve (AUC). Additionally, the clinical applicability of the clinical-radiomic model was appraised through decision curve analysis (DCA). Results The clinical-radiomic model incorporated seven significant markers: postHALP, ΔHB, post-ALB, firstorder_Skewness, GLCM_DifferenceAverage, GLCM_JointEntropy, GLDM_DependenceEntropy, and NGTDM_Complexity, to predict pCR. The XGBoost algorithm rendered an accuracy of 0.87 and an AUC of 0.84. Notably, the joint omics approach superseded the performance of solely radiomic or clinical model. The DCA further cemented the robust clinical utility of our clinical-radiomic model. Conclusion This study successfully formulated and validated a union omics methodology for anticipating the therapeutic outcomes of nICRT followed by radical surgical resection. Such insights are invaluable for clinicians in identifying potential nICRT responders among ESCC patients and tailoring optimal individualized treatment plans.
Collapse
Affiliation(s)
- Xiaohan Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Guanzhong Gong
- Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Qifeng Sun
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xue Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| |
Collapse
|
12
|
Jiang N, Zhang J, Guo Z, Wu Y, Zhao L, Kong C, Song X, Gu L, Zhao Y, Li S, He X, Ren B, Zhu X, Jiang M. Short-course neoadjuvant radiotherapy combined with chemotherapy and toripalimab for locally advanced esophageal squamous cell carcinoma (SCALE-1): a single-arm phase Ib clinical trial. J Immunother Cancer 2024; 12:e008229. [PMID: 38199609 PMCID: PMC10806572 DOI: 10.1136/jitc-2023-008229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The optimal dosages, timing, and treatment sequencing for standard-of-care neoadjuvant chemoradiotherapy necessitate re-evaluation when used in conjunction with immune checkpoint inhibitors for patients with resectable, locally advanced esophageal squamous cell carcinoma (RLaESCC). The SCALE-1 phase Ib study aimed to evaluate the safety and efficacy of short-course neoadjuvant radiotherapy combined with chemotherapy and toripalimab in this patient population. METHODS RLaESCC patients with clinical stages cT3-4aN0M0/cT1-4aN+M0 received neoadjuvant paclitaxel (135 mg/m2), carboplatin (area under the curve=5), and toripalimab (240 mg) every 3 weeks for two cycles. Short-course neoadjuvant radiotherapy (30 Gy in 12 fractions; 5 days per week) was administered between neoadjuvant immune-chemotherapy (nICT) doses. Esophagectomies were scheduled 4-6 weeks after completing neoadjuvant treatment. The primary endpoint was safety, with secondary endpoints including pathological complete response (pCR) rate, postoperative complications, progression-free survival (PFS), and overall survival (OS). Exploratory biomarker analysis used gene expression profiles via the nCounter platform. RESULTS Of the 23 patients enrolled, all completed neoadjuvant radiotherapy, while 21 cases finished full nICT doses and cycles. Common grade 3/4 adverse events included neutropenia (57%), leukopenia (39%), and skin rash (30%). No grade 3 or higher esophagitis or pneumonitis occured. Twenty patients underwent surgery, and 11 achieved pCR (55%). Two patients (10%) experienced grade IIIb surgical complications. At the database lock, a 2-year PFS rate of 63.8% (95% CI 43.4% to 84.2%) and 2-year OS rate was 78% (95% CI 64.9% to 91.1%) were achieved. Tumor immune microenvironment analysis indicated that tumors with pCR exhibited significantly higher pretreatment T-cell-inflamed score and post-treatment reshaping of antitumor immunity. CONCLUSIONS Combining short-course neoadjuvant radiotherapy with chemotherapy and toripalimab demonstrated favorable safety and promising efficacy in RLaESCC patients. TRIAL REGISTRATION NUMBER ChiCTR2100045104.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingyuan Zhang
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhen Guo
- Department of Medical Imaging Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yinan Wu
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lijun Zhao
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Kong
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue Song
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lingling Gu
- Department of Medical Imaging Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Zhao
- Department of Biostatistics, Nanjing Medical University, Nanjing, China
| | - Si Li
- Medical Department, Jiangsu Simcere Diagnostics Co. Ltd.; Nanjing Simcere Co. Ltd.; The State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing, China
| | - Xia He
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Binhui Ren
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangzhi Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Jiang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Mortensen HR, Populaire P, Hoffmann L, Moeller DS, Appelt A, Nafteux P, Muijs CT, Grau C, Hawkins MA, Troost EGC, Defraene G, Canters R, Clarke CS, Weber DC, Korevaar EW, Haustermans K, Nordsmark M, Gebski V, Achiam MP, Markar SR, Radhakrishna G, Berbee M, Scartoni D, Orlandi E, Doyen J, Gregoire V, Crehange G, Langendijk J, Lorgelly P, Blommenstein HM, Byskov CS, Ehmsen ML, Jensen MF, Freixas GV, Bütof R. Proton versus photon therapy for esophageal cancer - A trimodality strategy (PROTECT) NCT050555648: A multicenter international randomized phase III study of neoadjuvant proton versus photon chemoradiotherapy in locally advanced esophageal cancer. Radiother Oncol 2024; 190:109980. [PMID: 37935284 DOI: 10.1016/j.radonc.2023.109980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/29/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Affiliation(s)
- H R Mortensen
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - P Populaire
- University Hospitals Leuven, Department of Radiation Oncology, Belgium; KU Leuven- University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - L Hoffmann
- Department of Oncology and Medical Physics, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - D S Moeller
- Department of Oncology and Medical Physics, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | | | - P Nafteux
- University Hospitals Leuven, Department of Thoracic Surgery, Belgium
| | - C T Muijs
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - C Grau
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - M A Hawkins
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - E G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay Helmholtz-Zentrum Dresden-Rossendorf, Germany
| | - G Defraene
- KU Leuven- University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - R Canters
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, the Netherlands
| | - C S Clarke
- Research Dept. of Primary Care and Population Health, University College London, London, UK
| | - D C Weber
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland; Radiation Oncology Department, University Hospital Zurich, Zurich, Switzerland
| | - E W Korevaar
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - K Haustermans
- University Hospitals Leuven, Department of Radiation Oncology, Belgium; KU Leuven- University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - M Nordsmark
- Department of Oncology and Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Val Gebski
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - M P Achiam
- Dept. Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Sheraz R Markar
- Department of General Surgery, Oxford University Hospitals, Oxford, UK; Nuffield Department of Surgery, University of Oxford, Oxford, UK
| | | | - Maaike Berbee
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Daniele Scartoni
- Proton Therapy Center, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Ester Orlandi
- National Center for Oncological Hadrontherapy (CNAO), Radiation Oncology Clinical Department, Pavia, Italy
| | | | | | - Gilles Crehange
- PSL Research University, RadiationOncology Department, Institut Curie, Paris/Orsay, France
| | - Johannes Langendijk
- Department of Radiation Oncology, UniversityMedicalCentreGroningen, Groningen, The Netherlands
| | - Paula Lorgelly
- University of Auckland, Waipara Taumata Rau, Auckland, New Zealand
| | - Hedwig M Blommenstein
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, P.O. Box 1738, Rotterdam, 3000 DR, The Netherlands; Erasmus Centre for Health Economics Rotterdam, Erasmus University, Rotterdam, The Netherlands
| | - Camilla S Byskov
- Department of Oncology and Medical physics, Aarhus University Hospital, Aarhus, Denmark
| | - Mai L Ehmsen
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Gloria Vilches Freixas
- Maastro Proton Therapy, Department of Radiation Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Rebecca Bütof
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay Helmholtz-Zentrum Dresden-Rossendorf, Germany
| |
Collapse
|
14
|
Populaire P, Defraene G, Nafteux P, Depypere L, Moons J, Isebaert S, Haustermans K. Clinical implications of dose to functional lung volumes in the trimodality treatment of esophageal cancer. Acta Oncol 2023; 62:1488-1495. [PMID: 37643135 DOI: 10.1080/0284186x.2023.2251091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Trimodality treatment, i.e., neoadjuvant chemoradiotherapy (nCRT) followed by surgery, for locally advanced esophageal cancer (EC) improves overall survival but also increases the risk of postoperative pulmonary complications. Here, we tried to identify a relation between dose to functional lung volumes (FLV) as determined by 4D-CT scans in EC patients and treatment-related lung toxicity. MATERIALS AND METHODS All patients with EC undergoing trimodality treatment between 2017 and 2022 in UZ Leuven and scanned with 4D-CT-simulation were selected. FLVs were determined based on Jacobian determinants of deformable image registration between maximum inspiration and expiration phases. Dose/volume parameters of the anatomical lung volume (ALV) and FLV were compared between patients with versus without postoperative pulmonary complications. Results of pre- and post-nCRT pulmonary function tests (PFTs) were collected and compared in relation to radiation dose. RESULTS Twelve out of 51 EC patients developed postoperative pulmonary complications. ALV was smaller while FLV10Gy and FLV20Gy were larger in patients with complications (respectively 3141 ± 858mL vs 3601 ± 635mL, p = 0.025; 360 ± 216mL vs 264 ± 139mL, p = 0.038; 166 ± 106mL vs 118 ± 63mL, p = 0.030). No differences in ALV dose-volume parameters were detected. Baseline FEV1 and TLC were significantly lower in patients with complications (respectively 90 ± 17%pred vs 102 ± 20%pred, p = 0.033 and 93 ± 17%pred vs 110 ± 13%pred, p = 0.001), though no other PFTs were significantly different between both groups. DLCO was the only PFT that had a meaningful decrease after nCRT (85 ± 17%pred vs 68 ± 15%pred, p < 0.001) but was not related to dose to ALV/FLV. CONCLUSION Small ALV and increasing FLV exposed to intermediate (10 to 20 Gy) dose are associated to postoperative pulmonary complications. Changes of DLCO occur during nCRT but do not seem to be related to radiation dose to ALV or FLV. This information could attribute towards toxicity risk prediction and reduction strategies for EC.
Collapse
Affiliation(s)
- Pieter Populaire
- Department of Radiation Oncology, UZ Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Philippe Nafteux
- Department of Thoracic Surgery, UZ Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Lieven Depypere
- Department of Thoracic Surgery, UZ Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Johnny Moons
- Department of Thoracic Surgery, UZ Leuven, Leuven, Belgium
| | - Sofie Isebaert
- Department of Radiation Oncology, UZ Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Karin Haustermans
- Department of Radiation Oncology, UZ Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Guzene L, Beddok A, Nioche C, Modzelewski R, Loiseau C, Salleron J, Thariat J. Assessing Interobserver Variability in the Delineation of Structures in Radiation Oncology: A Systematic Review. Int J Radiat Oncol Biol Phys 2023; 115:1047-1060. [PMID: 36423741 DOI: 10.1016/j.ijrobp.2022.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE The delineation of target volumes and organs at risk is the main source of uncertainty in radiation therapy. Numerous interobserver variability (IOV) studies have been conducted, often with unclear methodology and nonstandardized reporting. We aimed to identify the parameters chosen in conducting delineation IOV studies and assess their performances and limits. METHODS AND MATERIALS We conducted a systematic literature review to highlight major points of heterogeneity and missing data in IOV studies published between 2018 and 2021. For the main used metrics, we did in silico analyses to assess their limits in specific clinical situations. RESULTS All disease sites were represented in the 66 studies examined. Organs at risk were studied independently of tumor site in 29% of reviewed IOV studies. In 65% of studies, statistical analyses were performed. No gold standard (GS; ie, reference) was defined in 36% of studies. A single expert was considered as the GS in 21% of studies, without testing intraobserver variability. All studies reported both absolute and relative indices, including the Dice similarity coefficient (DSC) in 68% and the Hausdorff distance (HD) in 42%. Limitations were shown in silico for small structures when using the DSC and dependence on irregular shapes when using the HD. Variations in DSC values were large between studies, and their thresholds were inconsistent. Most studies (51%) included 1 to 10 cases. The median number of observers or experts was 7 (range, 2-35). The intraclass correlation coefficient was reported in only 9% of cases. Investigating the feasibility of studying IOV in delineation, a minimum of 8 observers with 3 cases, or 11 observers with 2 cases, was required to demonstrate moderate reproducibility. CONCLUSIONS Implementation of future IOV studies would benefit from a more standardized methodology: clear definitions of the gold standard and metrics and a justification of the tradeoffs made in the choice of the number of observers and number of delineated cases should be provided.
Collapse
Affiliation(s)
- Leslie Guzene
- Department of Radiation Oncology, University Hospital of Amiens, Amiens, France
| | - Arnaud Beddok
- Department of Radiation Oncology, Institut Curie, Paris/Saint-Cloud/Orsay, France; Laboratory of Translational Imaging in Oncology (LITO), InsermUMR, Institut Curie, Orsay, France
| | - Christophe Nioche
- Laboratory of Translational Imaging in Oncology (LITO), InsermUMR, Institut Curie, Orsay, France
| | - Romain Modzelewski
- LITIS - EA4108-Quantif, Normastic, University of Rouen, and Nuclear Medicine Department, Henri Becquerel Center, Rouen, France
| | - Cedric Loiseau
- Department of Radiation Oncology, Centre François Baclesse; ARCHADE Research Community Caen, France; Département de Biostatistiques, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Julia Salleron
- Département de Biostatistiques, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Juliette Thariat
- Department of Radiation Oncology, Centre François Baclesse; ARCHADE Research Community Caen, France; Laboratoire de Physique Corpusculaire, Caen, France; Unicaen-Université de Normandie, Caen, France.
| |
Collapse
|
16
|
Han D, Li B, Zhao Q, Sun H, Dong J, Hao S, Huang W. The Key Clinical Questions of Neoadjuvant Chemoradiotherapy for Resectable Esophageal Cancer—A Review. Front Oncol 2022; 12:890688. [PMID: 35912182 PMCID: PMC9333126 DOI: 10.3389/fonc.2022.890688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Over 50% of individuals with esophageal cancer (EC) present with advanced stages of the disease; therefore, their outcome following surgery alone is poor, with only 25%–36% being alive 5 years post-surgery. Based on the evidence that the CROSS and NEOCRTEC5010 trials provided, neoadjuvant chemoradiotherapy (nCRT) is now the standard therapy for patients with locally advanced EC. However, there are still many concerning clinical questions that remain controversial such as radiation dose, appropriate patient selection, the design of the radiation field, the time interval between chemoradiotherapy (CRT) and surgery, and esophageal retention. With immune checkpoint inhibitors (ICIs) rapidly becoming a mainstay of cancer therapy, along with radiation, chemotherapy, and surgery, the combination mode of immunotherapy is also becoming a hot topic of discussion. Here, we try to provide constructive suggestions to answer the perplexing problems and clinical concerns for the progress of nCRT for EC in the future.
Collapse
Affiliation(s)
- Dan Han
- Shandong University Cancer Center, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qian Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hongfu Sun
- Shandong University Cancer Center, Jinan, China
| | - Jinling Dong
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shaoyu Hao
- Shandong University Cancer Center, Jinan, China
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Wei Huang, ; Shaoyu Hao,
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Wei Huang, ; Shaoyu Hao,
| |
Collapse
|
17
|
Comparable Clinical Outcome Using Small or Large Gross Tumor Volume-to-Clinical Target Volume Margin Expansion in Neoadjuvant Chemoradiotherapy for Esophageal Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:5635071. [PMID: 35693980 PMCID: PMC9187480 DOI: 10.1155/2022/5635071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to evaluate the feasibility of small primary gross tumor volume (GTV)-to-clinical target volume (CTV) margin expansion in neoadjuvant chemoradiation for esophageal squamous cell carcinoma. Medical records of 139 patients with locally advanced esophageal squamous cell carcinoma who underwent neoadjuvant chemoradiation and radical esophagectomy were retrospectively reviewed. Patients treated with longitudinal primary GTV-to-CTV margin expansion of 2 cm and no additional expansion of the CTV through the esophagus were classified into a small margin (SM) group (37 patients). The remaining 102 patients were classified as a large margin (LM) group. Patterns of recurrence including local and out-field regional recurrence rates were compared between the two groups. Clinical outcomes including rates of local control, regional control, failure-free survival, and overall survival were also compared. More patients in the SM group underwent paclitaxel + carboplatin, Mckeown esophagectomy, and intensity-modulated radiation therapy than in the LM group. With a median follow-up of 25.6 months, there was no significant difference in the crude rate of local recurrence (10.8% vs. 6.9%, P=0.694), out-field regional recurrence (27.0% vs. 19.6%, P=0.480), or out-field regional recurrence without in-field recurrence (10.8% vs. 12.7%, P=0.988) between the two groups. There was no significant difference in failure-free survival (5-year, 34.4% vs. 30.6%, P=0.652) or overall survival (44.1% vs. 38.5%, P=1.000), either. Esophageal fistula was not reported in the SM group (0.0% vs. 7.9%, P=0.176). In conclusion, a radiation field with 2 cm of longitudinal primary GTV-to-CTV was feasible in the neoadjuvant setting for esophageal squamous cell carcinoma treatment.
Collapse
|
18
|
Hoffmann L, Mortensen H, Shamshad M, Berbee M, Bizzocchi N, Bütof R, Canters R, Defraene G, Lykkegaard Ehmsen M, Fiorini F, Haustermans K, Hulley R, Korevaar EW, Clarke M, Makocki S, Muijs CT, Murray L, Nicholas O, Nordsmark M, Radhakrishna G, Thomas M, Troost EGC, Vilches-Freixas G, Visser S, Weber DC, Sloth Møller D. Treatment planning comparison in the PROTECT-trial randomising proton versus photon beam therapy in oesophageal cancer: results from eight european centres. Radiother Oncol 2022; 172:32-41. [PMID: 35513132 DOI: 10.1016/j.radonc.2022.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE To compare dose distributions and robustness in treatment plans from eight European centres in preparation for the European randomized phase-III PROTECT-trial investigating the effect of proton therapy (PT) versus photon therapy (XT) for oesophageal cancer. MATERIALS AND METHODS All centres optimized one PT and one XT nominal plan using delineated 4DCT scans for four patients receiving 50.4Gy(RBE) in 28 fractions. Target volume receiving 95% of prescribed dose (V95%iCTVtotal) should be >99%. Robustness towards setup, range, and respiration was evaluated. The plans were recalculated on a surveillance 4DCT (sCT) acquired at fraction ten and robustness evaluation was performed to evaluate the effect of respiration and inter-fractional anatomical changes. RESULTS All PT and XT plans complied with V95%iCTVtotal>99% for the nominal plan and V95%iCTVtotal>97% for all respiratory and robustness scenarios. Lung and heart dose varied considerably between centres for both modalities. The difference in mean lung dose and mean heart dose between each pair of XT and PT plans was in median [range] 4.8Gy [1.1;7.6] and 8.4Gy [1.9;24.5], respectively. Patients B and C showed large inter-fractional anatomical changes on sCT. For patient B, the minimum V95%iCTVtotal in the worst-case robustness scenario was 45% and 94% for XT and PT, respectively. For patient C, the minimum V95%iCTVtotal was 57% and 72% for XT and PT, respectively. Patient A and D showed minor inter-fractional changes and the minimum V95%iCTVtotal was >85%. CONCLUSION Large variability in dose to the lungs and heart was observed for both modalities. Inter-fractional anatomical changes led to larger target dose deterioration for XT than PT plans.
Collapse
Affiliation(s)
- Lone Hoffmann
- Department of Medical Physics, Aarhus University Hospital, Denmark; Dept. of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark.
| | - Hanna Mortensen
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - Muhammad Shamshad
- Department of Medical Physics, Aarhus University Hospital, Denmark; Dept. of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - Maaike Berbee
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Nicola Bizzocchi
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - Rebecca Bütof
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Richard Canters
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Gilles Defraene
- KU Leuven - University of Leuven - Department of Oncology - Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | | | | | - Karin Haustermans
- KU Leuven - University of Leuven - Department of Oncology - Laboratory of Experimental Radiotherapy, Leuven, Belgium; University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - Ryan Hulley
- South West Wales Cancer Centre, Swansea University Board, UL AND Swansea University Medical School, United Kingdom
| | - Erik W Korevaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Matthew Clarke
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Sebastian Makocki
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Christina T Muijs
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Luke Murray
- Rutherford Cancer Centre, Shinfield, Reading, United Kingdom
| | - Owen Nicholas
- South West Wales Cancer Centre, Swansea University Board, UL AND Swansea University Medical School, United Kingdom
| | | | | | - Melissa Thomas
- KU Leuven - University of Leuven - Department of Oncology - Laboratory of Experimental Radiotherapy, Leuven, Belgium; University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Gloria Vilches-Freixas
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Sabine Visser
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland; Radiation Oncology Department, University Hospital Zurich, Zurich, Switzerland
| | - Ditte Sloth Møller
- Department of Medical Physics, Aarhus University Hospital, Denmark; Dept. of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
19
|
Li F, Li Y, Wang X, Zhang Y, Liu X, Liu S, Wang W, Wang J, Guo Y, Xu M, Li J. Inter-Observer and Intra-Observer Variability in Gross Tumor Volume Delineation of Primary Esophageal Carcinomas Based on Different Combinations of Diagnostic Multimodal Images. Front Oncol 2022; 12:817413. [PMID: 35433413 PMCID: PMC9010659 DOI: 10.3389/fonc.2022.817413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Background and Purpose This study aimed to investigate inter-/intra-observer delineation variability in GTVs of primary esophageal carcinomas (ECs) based on planning CT with reference to different combinations of diagnostic multimodal images from endoscopy/EUS, esophagography and FDG-PET/CT. Materials and Methods Fifty patients with pathologically proven thoracic EC who underwent diagnostic multimodal images before concurrent chemoradiotherapy were enrolled. Five radiation oncologist independently delineated the GTVs based on planning CT only (GTVC), CT combined with endoscopy/EUS (GTVCE), CT combined with endoscopy/EUS and esophagography (X-ray) (GTVCEX), and CT combined with endoscopy/EUS, esophagography, and FDG-PET/CT (GTVCEXP). The intra-/inter-observer variability in the volume, longitudinal length, generalized CI (CIgen), and position of the GTVs were assessed. Results The intra-/inter-observer variability in the volume and longitudinal length of the GTVs showed no significant differences (p>0.05). The mean intra-observer CIgen values for all observers was 0.73 ± 0.15. The mean inter-observer CIgen values for the four multimodal image combinations was 0.67 ± 0.11. The inter-observer CIgen for the four combined images was the largest, showing significant differences with those for the other three combinations. The intra-observer CIgen among different observers and inter-observer CIgen among different combinations of multimodal images showed significant differences (p<0.001). The intra-observer CIgen for the senior radiotherapists was larger than that for the junior radiotherapists (p<0.001). Conclusion For radiation oncologists with advanced medical imaging training and clinical experience, using diagnostic multimodal images from endoscopy/EUS, esophagography, and FDG-PET/CT could reduce the intra-/inter-observer variability and increase the accuracy of target delineation in primary esophageal carcinomas.
Collapse
Affiliation(s)
- Fengxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Fengxiang Li, ; Jianbin Li,
| | - Yankang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xue Wang
- Department of Radiation Oncology, Linyi Cancer Hospital, Linyi, China
| | - Yingjie Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xijun Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shanshan Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinzhi Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yanluan Guo
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Min Xu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jianbin Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Fengxiang Li, ; Jianbin Li,
| |
Collapse
|
20
|
Hoffmann L, Persson G, Nygård L, Nielsen T, Borrisova S, Gaard-Petersen F, Josipovic M, Khalil A, Kjeldsen R, Knap M, Kristiansen C, Møller D, Ottosson W, Sand H, Thing R, Pøhl M, Schytte T. Thorough design and pre-trial quality assurance (QA) decrease dosimetric impact of delineation and dose planning variability in the STRICTLUNG and STARLUNG trials for stereotactic body radiotherapy (SBRT) of central and ultra-central lung tumours. Radiother Oncol 2022; 171:53-61. [DOI: 10.1016/j.radonc.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
|
21
|
Lapa C, Nestle U, Albert NL, Baues C, Beer A, Buck A, Budach V, Bütof R, Combs SE, Derlin T, Eiber M, Fendler WP, Furth C, Gani C, Gkika E, Grosu AL, Henkenberens C, Ilhan H, Löck S, Marnitz-Schulze S, Miederer M, Mix M, Nicolay NH, Niyazi M, Pöttgen C, Rödel CM, Schatka I, Schwarzenboeck SM, Todica AS, Weber W, Wegen S, Wiegel T, Zamboglou C, Zips D, Zöphel K, Zschaeck S, Thorwarth D, Troost EGC. Value of PET imaging for radiation therapy. Strahlenther Onkol 2021; 197:1-23. [PMID: 34259912 DOI: 10.1007/s00066-021-01812-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
This comprehensive review written by experts in their field gives an overview on the current status of incorporating positron emission tomography (PET) into radiation treatment planning. Moreover, it highlights ongoing studies for treatment individualisation and per-treatment tumour response monitoring for various primary tumours. Novel tracers and image analysis methods are discussed. The authors believe this contribution to be of crucial value for experts in the field as well as for policy makers deciding on the reimbursement of this powerful imaging modality.
Collapse
Affiliation(s)
- Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
- Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Baues
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Ambros Beer
- Department of Nuclear Medicine, Ulm University Hospital, Ulm, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Rebecca Bütof
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stephanie E Combs
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Neuherberg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Cihan Gani
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Anca-L Grosu
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Christoph Henkenberens
- Department of Radiotherapy and Special Oncology, Medical School Hannover, Hannover, Germany
| | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Simone Marnitz-Schulze
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Hospital Mainz, Mainz, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Maximilian Niyazi
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christoph Pöttgen
- Department of Radiation Oncology, West German Cancer Centre, University of Duisburg-Essen, Essen, Germany
| | - Claus M Rödel
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | | | - Andrei S Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Weber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Thomas Wiegel
- Department of Radiation Oncology, Ulm University Hospital, Ulm, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Daniel Zips
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Klaus Zöphel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Nuclear Medicine, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany.
| |
Collapse
|
22
|
Lapa C, Nestle U, Albert NL, Baues C, Beer A, Buck A, Budach V, Bütof R, Combs SE, Derlin T, Eiber M, Fendler WP, Furth C, Gani C, Gkika E, Grosu AL, Henkenberens C, Ilhan H, Löck S, Marnitz-Schulze S, Miederer M, Mix M, Nicolay NH, Niyazi M, Pöttgen C, Rödel CM, Schatka I, Schwarzenboeck SM, Todica AS, Weber W, Wegen S, Wiegel T, Zamboglou C, Zips D, Zöphel K, Zschaeck S, Thorwarth D, Troost EGC. Value of PET imaging for radiation therapy. Nuklearmedizin 2021; 60:326-343. [PMID: 34261141 DOI: 10.1055/a-1525-7029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This comprehensive review written by experts in their field gives an overview on the current status of incorporating positron emission tomography (PET) into radiation treatment planning. Moreover, it highlights ongoing studies for treatment individualisation and per-treatment tumour response monitoring for various primary tumours. Novel tracers and image analysis methods are discussed. The authors believe this contribution to be of crucial value for experts in the field as well as for policy makers deciding on the reimbursement of this powerful imaging modality.
Collapse
Affiliation(s)
- Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Baues
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Ambros Beer
- Department of Nuclear Medicine, Ulm University Hospital, Ulm, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Rebecca Bütof
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stephanie E Combs
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany.,Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Neuherberg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Cihan Gani
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | | | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Simone Marnitz-Schulze
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Hospital Mainz, Mainz, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Maximilian Niyazi
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christoph Pöttgen
- Department of Radiation Oncology, West German Cancer Centre, University of Duisburg-Essen, Essen, Germany
| | - Claus M Rödel
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | | | - Andrei S Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Weber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Thomas Wiegel
- Department of Radiation Oncology, Ulm University Hospital, Ulm, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Daniel Zips
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Klaus Zöphel
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Nuclear Medicine, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | | |
Collapse
|
23
|
Møller DS, Poulsen PR, Hagner A, Dufour M, Nordsmark M, Nyeng TB, Mortensen HR, Lutz CM, Hoffmann L. Strategies for Motion Robust Proton Therapy With Pencil Beam Scanning for Esophageal Cancer. Int J Radiat Oncol Biol Phys 2021; 111:539-548. [PMID: 33974885 DOI: 10.1016/j.ijrobp.2021.04.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/28/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Proton therapy of esophageal cancer is superior to photon radiation therapy in terms of normal tissue sparing. However, respiratory motion and anatomical changes may compromise target dose coverage owing to density changes, geometric misses, and interplay effects. Here we investigate the combined effect on clinical target volume (CTV) coverage and compare proton therapy with intensity modulated radiation therapy (IMRT). METHODS AND MATERIALS This study includes 26 patients with esophageal cancer previously treated with IMRT planned on 4-dimensional computed tomography (4D-CT). For each patient, 7 proton pencil beam scanning (PBS) plans were created with different field configurations and optimization strategies. The effect of respiration was investigated by calculating the phase doses, 4D dose, and 4D dynamic dose (including interplay effects). The effect of anatomical changes was investigated by recalculating all plans on all phases of a 4D-CT surveillance scan. RESULTS The most robust PBS plans were achieved using 2 posterior beams requiring coverage of planning target volume (PTV) and simultaneously using robust optimization (RO) of CTV (2PAPTVRO), resulting in only 1 patient showing V95%CTV <97% in 1 or more phases of the planning CT. For the least robust PBS plans obtained using lateral + posterior beams and CTV-RO, but not requiring PTV coverage (2LPRO), 10 patients showed underdosage. For IMRT, 2 patients showed underdosage. Interplay effects reduced V95%CTV significantly when delivering only 1 fraction, but the effects generally averaged out after 10 fractions. The effect of interplay was significantly larger for RO-only plans compared with plans optimized with RO combined with PTV coverage. Combining the effect of anatomical changes and respiration on the 4D-CT surveillance scan resulted in V95%CTV <97% for 3 2PAPTVRO, 16 2LPRO, and 8 IMRT patients. CONCLUSIONS PBS using posterior beam angles was more robust to anatomical changes and respiration than IMRT. The effect of respiration was enhanced when anatomical changes were present. Single fraction interplay effects deteriorated the dose distribution but were averaged out after 10 fractions.
Collapse
Affiliation(s)
- Ditte Sloth Møller
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark.
| | - Per Rugaard Poulsen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Andreas Hagner
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Mathieu Dufour
- Department of Physics, University of Turin, Turin, Italy
| | | | | | | | | | - Lone Hoffmann
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
24
|
Akuamoa-Boateng D, Wegen S, Ferdinandus J, Marksteder R, Baues C, Marnitz S. Managing patient flows in radiation oncology during the COVID-19 pandemic : Reworking existing treatment designs to prevent infections at a German hot spot area University Hospital. Strahlenther Onkol 2020; 196:1080-1085. [PMID: 33123776 PMCID: PMC7595566 DOI: 10.1007/s00066-020-01698-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/26/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE The described work aimed to avoid cancellations of indispensable treatments by implementing active patient flow management practices and optimizing infrastructure utilization in the radiation oncology department of a large university hospital and regional COVID-19 treatment center close to the first German SARS-CoV‑2 hotspot region Heinsberg in order to prevent nosocomial infections in patients and personnel during the pandemic. PATIENTS AND METHODS The study comprised year-to-date intervention analyses of in- and outpatient key procedures, machine occupancy, and no-show rates in calendar weeks 12 to 19 of 2019 and 2020 to evaluate effects of active patient flow management while monitoring nosocomial COVID-19 infections. RESULTS Active patient flow management helped to maintain first-visit appointment compliance above 85.5%. A slight appointment reduction of 10.3% daily (p = 0.004) could still significantly increase downstream planning CT scheduling (p = 0.00001) and performance (p = 0.0001), resulting in an absolute 20.1% (p = 0.009) increment of CT performance while avoiding overbooking practices. Daily treatment start was significantly increased by an absolute value of 18.5% (p = 0.026). Hypofractionation and acceleration were significantly increased (p = 0.0043). Integrating strict testing guidelines, a distancing regimen for staff and patients, hygiene regulations, and precise appointment scheduling, no SARS-CoV‑2 infection in 164 tested radiation oncology service inpatients was observed. CONCLUSION In times of reduced medical infrastructure capacities and resources, controlling infrastructural time per patient as well as optimizing facility utilization and personnel workload during treatment evaluation, planning, and irradiation can help to improve appointment compliance and quality management. Avoiding recurrent and preventable exposure to healthcare infrastructure has potential health benefits and might avert cross infections during the pandemic. Active patient flow management in high-risk COVID-19 regions can help Radiation Oncologists to continue and initiate treatments safely, instead of cancelling and deferring indicated therapies.
Collapse
Affiliation(s)
- Dennis Akuamoa-Boateng
- Department of Radiation Oncology, Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany.
| | - Simone Wegen
- Department of Radiation Oncology, Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany
| | - Justin Ferdinandus
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Regina Marksteder
- Department of Hospital Pharmacy, University Hospital Cologne, Cologne, Germany
| | - Christian Baues
- Department of Radiation Oncology, Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany
| | - Simone Marnitz
- Department of Radiation Oncology, Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|