1
|
Shi M, Yuan H, Li Y, Guo Z, Wei J. Targeting Macrophage Phenotype for Treating Heart Failure: A New Approach. Drug Des Devel Ther 2024; 18:4927-4942. [PMID: 39525046 PMCID: PMC11549885 DOI: 10.2147/dddt.s486816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Heart failure (HF) is a disease with high morbidity and mortality rates worldwide and significantly affects human health. Currently, the treatment options for HF are limited, and there is an urgent need to discover new therapeutic targets and strategies. Macrophages are innate immune cells involved in the development of HF. They play a crucial role in maintaining cardiac homeostasis and regulating cardiac stress. Recently, macrophages have received increasing attention as potential targets for treating HF. With the improvement of technological means, the study of macrophages in HF has made great progress. This article discusses the biological functions of macrophage phagocytosis, immune response, and tissue repair. The polarization, pyroptosis, autophagy, and apoptosis are of macrophages, deeply involved in the pathogenesis of HF. Modulation of the phenotypic changes of macrophages can improve immune-inflammation, myocardial fibrosis, energy metabolism, apoptosis, and angiogenesis in HF.
Collapse
Affiliation(s)
- Min Shi
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent TCM Diagnosis and Preventive Treatment of Chronic Diseases, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Hui Yuan
- Hunan Key Laboratory of Colleges and Universities of Intelligent TCM Diagnosis and Preventive Treatment of Chronic Diseases, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 41020, People’s Republic of China
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Zhihua Guo
- Hunan Key Laboratory of Colleges and Universities of Intelligent TCM Diagnosis and Preventive Treatment of Chronic Diseases, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 41020, People’s Republic of China
| | - Jiaming Wei
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent TCM Diagnosis and Preventive Treatment of Chronic Diseases, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| |
Collapse
|
2
|
Richard SA, Roy SK, Asiamah EA. Pivotal Role of Cranial Irradiation-Induced Peripheral, Intrinsic, and Brain-Engrafting Macrophages in Malignant Glioma. Clin Med Insights Oncol 2024; 18:11795549241282098. [PMID: 39421649 PMCID: PMC11483687 DOI: 10.1177/11795549241282098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
Malignant (high-grade) gliomas are aggressive intrinsic brain tumors that diffusely infiltrate the brain parenchyma. They comprise of World Health Organization (WHO) grade III and IV gliomas. Ionizing radiation or irradiation (IR) is frequently utilized in the treatment of both primary as well as metastatic brain tumors. On the contrary, macrophages (MΦ) are the most copious infiltrating immune cells of all the different cell types colonizing glioma. MΦ at tumor milieu are referred to as tumor-associated macrophages (TAMΦ). In malignant gliomas milieu, TAMΦ are also polarized into two distinct phenotypes such as M1 TAMΦ or M2 TAMΦ, which are capable of inhibiting or promoting tumor growth, respectively. Cranial-IR such as x- and γ-IR are sufficient to induce the migration of peripherally derived MΦ into the brain parenchyma. The IR facilitate a more immunosuppressive milieu via the stimulation of efferocytosis in TAMΦ, and an upsurge of tumor cell engulfment by TAMΦ exhibited detrimental effect of the anti-tumoral immune response in glioma. The MΦ inside the tumor mass are associated with multiple phenomena that include IR resistance and enrichment of the M2 MΦ after IR is able to facilitate glioblastoma multiforme (GBM) recurrence. Reviews on the role of cranial IR-induced peripheral and brain-engrafting macrophages (BeMΦ) in glioma are lacking. Specifically, most studies on peripheral, intrinsic as well as beMΦ on IR focus on WHO grade III and IV. Thus, this review precisely focuses primary on WHO grade III as well as IV gliomas.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), UK, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Sagor Kumar Roy
- Department of Neurology, TMSS Medical College and Hospital, Bogura, Bangladesh
| | - Emmanuel Akomanin Asiamah
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
3
|
Afzal A, Afzal Z, Bizink S, Davis A, Makahleh S, Mohamed Y, Coniglio SJ. Phagocytosis Checkpoints in Glioblastoma: CD47 and Beyond. Curr Issues Mol Biol 2024; 46:7795-7811. [PMID: 39194679 DOI: 10.3390/cimb46080462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest human cancers with very limited treatment options available. The malignant behavior of GBM is manifested in a tumor which is highly invasive, resistant to standard cytotoxic chemotherapy, and strongly immunosuppressive. Immune checkpoint inhibitors have recently been introduced in the clinic and have yielded promising results in certain cancers. GBM, however, is largely refractory to these treatments. The immune checkpoint CD47 has recently gained attention as a potential target for intervention as it conveys a "don't eat me" signal to tumor-associated macrophages (TAMs) via the inhibitory SIRP alpha protein. In preclinical models, the administration of anti-CD47 monoclonal antibodies has shown impressive results with GBM and other tumor models. Several well-characterized oncogenic pathways have recently been shown to regulate CD47 expression in GBM cells and glioma stem cells (GSCs) including Epidermal Growth Factor Receptor (EGFR) beta catenin. Other macrophage pathways involved in regulating phagocytosis including TREM2 and glycan binding proteins are discussed as well. Finally, chimeric antigen receptor macrophages (CAR-Ms) could be leveraged for greatly enhancing the phagocytosis of GBM and repolarization of the microenvironment in general. Here, we comprehensively review the mechanisms that regulate the macrophage phagocytosis of GBM cells.
Collapse
Affiliation(s)
- Amber Afzal
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Zobia Afzal
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Sophia Bizink
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Amanda Davis
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Sara Makahleh
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Yara Mohamed
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Salvatore J Coniglio
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| |
Collapse
|
4
|
Repici A, Ardizzone A, De Luca F, Colarossi L, Prestifilippo A, Pizzino G, Paterniti I, Esposito E, Capra AP. Signaling Pathways of AXL Receptor Tyrosine Kinase Contribute to the Pathogenetic Mechanisms of Glioblastoma. Cells 2024; 13:361. [PMID: 38391974 PMCID: PMC10886920 DOI: 10.3390/cells13040361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Brain tumors are a diverse collection of neoplasms affecting the brain with a high prevalence rate in people of all ages around the globe. In this pathological context, glioblastoma, a form of glioma that belongs to the IV-grade astrocytoma group, is the most common and most aggressive form of the primary brain tumors. Indeed, despite the best treatments available including surgery, radiotherapy or a pharmacological approach with Temozolomide, glioblastoma patients' mortality is still high, within a few months of diagnosis. Therefore, to increase the chances of these patients surviving, it is critical to keep finding novel treatment opportunities. In the past, efforts to treat glioblastoma have mostly concentrated on customized treatment plans that target specific mutations such as epidermal growth factor receptor (EGFR) mutations, Neurotrophic Tyrosine Receptor Kinase (NTRK) fusions, or multiple receptors using multi-kinase inhibitors like Sunitinib and Regorafenib, with varying degrees of success. Here, we focused on the receptor tyrosine kinase AXL that has been identified as a mediator for tumor progression and therapy resistance in various cancer types, including squamous cell tumors, small cell lung cancer, and breast cancer. Activated AXL leads to a significant increase in tumor proliferation, tumor cell migration, and angiogenesis in different in vitro and in vivo models of cancer since this receptor regulates interplay with apoptotic, angiogenic and inflammatory pathways. Based on these premises, in this review we mainly focused on the role of AXL in the course of glioblastoma, considering its primary biological mechanisms and as a possible target for the application of the most recent treatments.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Lorenzo Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Angela Prestifilippo
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Gabriele Pizzino
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| |
Collapse
|