Hart-Smith G, Lovestead TM, Davis TP, Stenzel MH, Barner-Kowollik C. Mapping Formation Pathways and End Group Patterns of Stimuli-Responsive Polymer Systems via High-Resolution Electrospray Ionization Mass Spectrometry.
Biomacromolecules 2007;
8:2404-15. [PMID:
17655199 DOI:
10.1021/bm700526j]
[Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
"Smart" polymers and polymer-protein conjugates find a vast array of biomedical applications. Ambient temperature reversible addition fragmentation chain transfer (RAFT) polymerizations conducted in an aqueous environment are a favorable method of choice for the synthesis of these materials; however, information regarding the initiation mechanisms behind these polymerizations-and thus the critical polymer end groups-is lacking. In the current study, high-resolution soft ionization mass spectrometry techniques were used to map the product species generated during ambient temperature gamma-radiation induced RAFT polymerizations of N-isopropylacrylamide (NIPAAm) and acrylic acid (AA) in aqueous media, allowing the generated end groups to be unambiguously established. It was found that trithiocarbonate and *R radicals produced from the radiolysis of the RAFT agent, *OH and *OOH radicals produced from the radiolysis of water, and *H radicals produced from the radiolysis of water, RAFT agent, or monomer were capable of initiating polymerizations and thus contribute toward the generated chain ends. Additionally, thiol terminated chains were formed via degradation of trithiocarbonate end groups. The current study is the first to provide comprehensive mapping of the formation pathways and end group patterns of stimuli-responsive polymers, thus allowing the design and implementation of these materials to proceed in a more tailored fashion.
Collapse