1
|
Blanco FG, Hernández N, Rivero-Buceta V, Maestro B, Sanz JM, Mato A, Hernández-Arriaga AM, Prieto MA. From Residues to Added-Value Bacterial Biopolymers as Nanomaterials for Biomedical Applications. NANOMATERIALS 2021; 11:nano11061492. [PMID: 34200068 PMCID: PMC8228158 DOI: 10.3390/nano11061492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022]
Abstract
Bacterial biopolymers are naturally occurring materials comprising a wide range of molecules with diverse chemical structures that can be produced from renewable sources following the principles of the circular economy. Over the last decades, they have gained substantial interest in the biomedical field as drug nanocarriers, implantable material coatings, and tissue-regeneration scaffolds or membranes due to their inherent biocompatibility, biodegradability into nonhazardous disintegration products, and their mechanical properties, which are similar to those of human tissues. The present review focuses upon three technologically advanced bacterial biopolymers, namely, bacterial cellulose (BC), polyhydroxyalkanoates (PHA), and γ-polyglutamic acid (PGA), as models of different carbon-backbone structures (polysaccharides, polyesters, and polyamides) produced by bacteria that are suitable for biomedical applications in nanoscale systems. This selection models evidence of the wide versatility of microorganisms to generate biopolymers by diverse metabolic strategies. We highlight the suitability for applied sustainable bioprocesses for the production of BC, PHA, and PGA based on renewable carbon sources and the singularity of each process driven by bacterial machinery. The inherent properties of each polymer can be fine-tuned by means of chemical and biotechnological approaches, such as metabolic engineering and peptide functionalization, to further expand their structural diversity and their applicability as nanomaterials in biomedicine.
Collapse
Affiliation(s)
- Francisco G. Blanco
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Natalia Hernández
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Virginia Rivero-Buceta
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Beatriz Maestro
- Host-Parasite Interplay in Pneumococcal Infection Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain; (B.M.); (J.M.S.)
| | - Jesús M. Sanz
- Host-Parasite Interplay in Pneumococcal Infection Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain; (B.M.); (J.M.S.)
| | - Aránzazu Mato
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Ana M. Hernández-Arriaga
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - M. Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
2
|
Ochoa-Segundo EI, González-Torres M, Cabrera-Wrooman A, Sánchez-Sánchez R, Huerta-Martínez BM, Melgarejo-Ramírez Y, Leyva-Gómez G, Rivera-Muñoz EM, Cortés H, Velasquillo C, Vargas-Muñoz S, Rodríguez-Talavera R. Gamma radiation-induced grafting of n-hydroxyethyl acrylamide onto poly(3-hydroxybutyrate): A companion study on its polyurethane scaffolds meant for potential skin tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111176. [PMID: 32806310 DOI: 10.1016/j.msec.2020.111176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/20/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022]
Abstract
This study aimed at investigating the synthesis, characterization, and search for a biotechnological application proposal for poly [(R)-3-hydroxybutyric acid] (PHB) grafted with the n-hydroxyethyl acrylamide (HEAA) monomer. The novel copolymer was prepared by 60Co gamma radiation-induced-graft polymerization. The effect of different solvents in the graft polymerization; the degree of grafting, crystallinity, and hydrophilicity; the morphology and the thermal properties were evaluated. The polyurethane fabricated from the grafted PHB was suggested as a scaffold. The enzymatic degradation behavior and the spectroscopic, morphological, mechanical, and biological properties of the composites were assessed. According to the results, the successful grafting of HEAA onto PHB was verified. The grafting was significantly affected by the type of solvent employed. A decreased crystallinity and increased hydrophilicity of the graft copolymer, concerning the PHB, was found. An increased roughness was observed in the morphology of the polymer after grafting. The thermodynamic parameters, except for the glass transition temperature, also decreased for the synthetic biopolymer. The intended use of these scaffolds for skin tissue engineering was supported by a proper degradability and degree of porosity, improved mechanical properties, the optimal culture of human fibroblasts, and its transfection with a plasmid vector containing an enhanced green fluorescent protein.
Collapse
Affiliation(s)
- Eric Ivan Ochoa-Segundo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Maykel González-Torres
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico.
| | - Alejandro Cabrera-Wrooman
- Laboratorio de Tejido Conjuntivo, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico.
| | - Roberto Sánchez-Sánchez
- Unidad de Ingeniería de Tejidos, Terapia celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | | | - Yaaziel Melgarejo-Ramírez
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Eric M Rivera-Muñoz
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, 76230, Mexico
| | - Hernán Cortés
- Departamento de Genética, Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Cristina Velasquillo
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Susana Vargas-Muñoz
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, 76230, Mexico
| | | |
Collapse
|
3
|
Polyhydroxyalkanoates based copolymers. Int J Biol Macromol 2019; 140:522-537. [PMID: 31437500 DOI: 10.1016/j.ijbiomac.2019.08.147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/09/2019] [Accepted: 08/17/2019] [Indexed: 11/23/2022]
Abstract
Polyhydroxyalkanoates (PHAs) belong to a family of natural polyesters and are produced under unbalanced growth conditions as intracellular carbon and energy reserves by a wide variety of microorganisms. Being biodegradable, biocompatible and environmental friendly thermoplastics, the PHAs are considered as future polymers to replace petrochemicals based plastics. In this review, the introduction section deals with the brief discussion on PHA nature, availability, raw materials for production, processing etc. This is followed by the discussions on modifications. The copolymer syntheses by bacterial and chemical methods have been discussed. Under chemical methods, unsaturated side chains and their derivatives, oligomer, coupling, macro-initiating, trans-esterification, radiation grafting, click chemistry, ring opening and several miscellaneous polymerization methods have been elaborated. A brief discussion on applications has been incorporated. The last section includes conclusion and future perspectives.
Collapse
|
4
|
González Torres M, Villarreal-Ramírez E, Moyaho Bernal MDLA, Álvarez M, González-Valdez J, Gutiérrez Uribe JA, Leyva Gómez G, Cortez JRC. Insights into the application of polyhydroxyalkanoates derivatives from the combination of experimental and simulation approaches. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Raza ZA, Riaz S, Banat IM. Polyhydroxyalkanoates: Properties and chemical modification approaches for their functionalization. Biotechnol Prog 2017; 34:29-41. [PMID: 28960792 DOI: 10.1002/btpr.2565] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/23/2017] [Indexed: 01/08/2023]
Abstract
Polyhydroxyalkanoates (PHAs) have become an attractive biomaterial in research in the past few years due to their extensive potential industrial applications. Being long chain hydroxyl fatty acid molecules, the PHAs are hydrophobic in nature, and have less functional groups. These features limit their applications in various areas. To enhance their usage, these polymers may need to be modified including surface and chemical modifications. Such modifications may alter their mechanical properties, surface structure, amphiphilic character and rate of degradation to fulfil the requirements for their future applications. Chemical modifications allow incorporation of functional groups to PHAs that could not be introduced through biotechnological methods. These chemically reformed PHAs, with enhanced properties, could be used for broad range of applications. This review aims to introduce different chemical modification approaches including some recent methods that had not been explored or discussed so far for PHAs as possible technologies for widening the range of product and application potentials. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:29-41, 2018.
Collapse
Affiliation(s)
- Zulfiqar Ali Raza
- Dept. of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan
| | - Shahina Riaz
- Dept. of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan
| | - Ibrahim M Banat
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, U.K
| |
Collapse
|
6
|
Reyes AP, Martínez Torres A, Carreón Castro MDP, Rodríguez Talavera JR, Muñoz SV, Aguilar VMV, Torres MG. Novel Poly(3-hydroxybutyrate-g-vinyl alcohol) Polyurethane Scaffold for Tissue Engineering. Sci Rep 2016; 6:31140. [PMID: 27502732 PMCID: PMC4977462 DOI: 10.1038/srep31140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
The design of new synthetic grafted poly(3-hydroxybutyrate) as composite 3D-scaffolds is a convenient alternative for tissue engineering applications. The chemically modified poly(3-hydroxybutyrate) is receiving increasing attention for use as biomimetic copolymers for cell growth. As of yet, these copolymers cannot be used efficiently because of the lack of good mechanical properties. Here, we address this challenge, preparing a composite-scaffold of grafted poly(3-hydroxybutyrate) polyurethane for the first time. However, it is unclear if the composite structure and morphology can also offer a biological application. We obtained the polyurethane by mixing a polyester hydroxylated resin with polyisocyanate and the modified polyhydroxyalkanoates. The results show that the poly(3-hydroxybutyrate) grafted with poly(vinyl alcohol) can be successfully used as a chain extender to form a chemically-crosslinked thermosetting polymer. Furthermore, we show a proposal for the mechanism of the polyurethane synthesis, the analysis of its morphology and the ability of the scaffolds for growing mammalian cells. We demonstrated that astrocytes isolated from mouse cerebellum, and HEK293 can be cultured in the prepared material, and express efficiently fluorescent proteins by adenoviral transduction. We also tested the metabolism of Ca(2+) to obtain evidence of the biological activity.
Collapse
Affiliation(s)
- Adriana Pétriz Reyes
- Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - Ataúlfo Martínez Torres
- Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | | | | | - Susana Vargas Muñoz
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | | | - Maykel González Torres
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México D.F, 04510, México
| |
Collapse
|
7
|
Radiation-induced graft polymerization of chitosan onto poly(3-hydroxybutyrate). Carbohydr Polym 2015; 133:482-92. [DOI: 10.1016/j.carbpol.2015.07.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/27/2015] [Accepted: 07/08/2015] [Indexed: 01/27/2023]
|
8
|
Torres MG, Rodríguez JR, Vargas S, González ME, Carreón-Castro MDP, Calzada GL, Brostow W, Hnatchuk N. Tribological and Mechanical Properties of Poly[(R)-3-hydroxybutyric acid] Grafted with Vinyl Compounds: Insight into Possible Application. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2015. [DOI: 10.1080/1023666x.2015.1036225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|