1
|
Kunisch E, Fiehn LA, Saur M, Arango-Ospina M, Merle C, Hagmann S, Stiller A, Hupa L, Renkawitz T, Boccaccini AR, Westhauser F. A comparative in vitro and in vivo analysis of the biological properties of the 45S5-, 1393-, and 0106-B1-bioactive glass compositions using human bone marrow-derived stromal cells and a rodent critical size femoral defect model. BIOMATERIALS ADVANCES 2023; 153:213521. [PMID: 37356285 DOI: 10.1016/j.bioadv.2023.213521] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/27/2023]
Abstract
Since the introduction of the 45S5-bioactive glass (BG), numerous new BG compositions have been developed. Compared to the 45S5-BG, 1393-BG shows favorable processing properties due to its low crystallization tendency and the 1393-BG-based borosilicate 0106-B1-BG exhibits improved angiogenic properties due to its boron content. Despite their close (chemical) relationship, the biological properties of the mentioned BG composition have not yet been comparatively examined. In this study, the effects of the BGs on proliferation, viability, osteogenic differentiation, and angiogenic factor production of human bone marrow-derived mesenchymal stromal cells were assessed. Scaffolds made of the BGs were introduced in a critical-sized femur defect model in rats in order to analyze their impact on bone defect regeneration. In vitro, 1393-BG and 0106-B1-BG outperformed 45S5-BG with regard to cell proliferation and viability. 1393-BG enhanced osteogenic differentiation; 0106-B1-BG promoted angiogenic factor production. In vivo, 0106-B1-BG and 45S5-BG outperformed 1393-BG in terms of angiogenic and osteoclastic response resulting in improved bone regeneration. In conclusion, the biological properties of BGs can be significantly modified by tuning their composition. Demonstrating favorable processing properties and an equally strong in vivo bone regeneration potential as 45S5-BG, 0106-B1-BG qualifies as a basis to incorporate other bioactive ions to improve its biological properties.
Collapse
Affiliation(s)
- Elke Kunisch
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Linn Anna Fiehn
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Merve Saur
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Marcela Arango-Ospina
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Christian Merle
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; Joint Replacement Centre, Orthopaedic Surgery Paulinenhilfe, Diakonie-Klinikum Stuttgart, Rosenbergstraße 38, 70176 Stuttgart, Germany
| | - Sébastien Hagmann
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Adrian Stiller
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - Tobias Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Fabian Westhauser
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| |
Collapse
|
2
|
Kaimonov MR, Safronova TV. Materials in the Na 2O-CaO-SiO 2-P 2O 5 System for Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5981. [PMID: 37687671 PMCID: PMC10488989 DOI: 10.3390/ma16175981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023]
Abstract
Calcium phosphate materials and materials based on silicon dioxide have been actively studied for more than 50 years due to their high biocompatibility and bioactivity. Hydroxyapatite and tricalcium phosphate are the most known among calcium phosphate materials, and Bioglass 45S5 is the most known material in the Na2O-CaO-SiO2-P2O5 system. Each of these materials has its application limits; however, some of them can be eliminated by obtaining composites based on calcium phosphate and bioglass. In this article, we provide an overview of the role of silicon and its compounds, including Bioglass 45S5, consider calcium phosphate materials, talk about the limits of each material, demonstrate the potential of the composites based on them, and show the other ways of obtaining composite ceramics in the Na2O-CaO-SiO2-P2O5 system.
Collapse
Affiliation(s)
- Maksim R. Kaimonov
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1, Building 73, 119991 Moscow, Russia
| | - Tatiana V. Safronova
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1, Building 73, 119991 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, 119991 Moscow, Russia
| |
Collapse
|
3
|
Inspection of Radiation Shielding Proficiency and Effect of Gamma-Ray on ESR and Thermal Characteristics of Copper Oxide Modified Borate Bioglasses. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02349-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AbstractSamples of copper-modified bioactive borate glasses were synthesized and their radiation shielding properties including gamma-ray and neutron radiation shielding were investigated. Further, the glasses’ mass attenuation coefficients were measured with a NaI(Tl) detector while their gamma-ray shielding parameters were estimated using Phy-X/PSD program. Free-radical densities were measured via electron spin resonance to estimate the absorbed doses during accidental irradiation. The extensive reduction of the dose detection threshold (2 Gy) required the estimation of the signal of the non-irradiated sample. In addition, the effects of applied microwave power and absorbed dose on synthesized samples were studied. Finally, the thermal annealing of the emerging peaks, which were due to the irradiation signal-to-noise ratio and energy dependence, was studied to estimate the stabilities of such peaks. This modified material is recommended to detect and monitor the gamma-radiation dose because of its good dosimetric properties. Finally, regarding the presence of the two borate groups, triangular and the tetrahedrally coordinated, in their definite and typical wavenumbers, the FTIR spectra displayed simplified vibrations that were close to those of many bioglasses. This paper provides complementary results for the author's previous research examining this glass for low photon dose measurements using luminescence characteristics.
Collapse
|
4
|
El‐Naggar SA, El‐Barbary AA, Salama WM, Elkholy HM. Synthesis, characterization, and biological activities of folic acid conjugates with polyvinyl alcohol, chitosan, and cellulose. J Appl Polym Sci 2022. [DOI: 10.1002/app.52250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Wesam M. Salama
- Zoology Department, Faculty of Science Tanta University Tanta Egypt
| | - Hazem M. Elkholy
- Chemistry Department, Faculty of Science Tanta University Tanta Egypt
| |
Collapse
|
5
|
Tommalieh M, Ibrahium HA, Awwad NS, Menazea A. Gold nanoparticles doped Polyvinyl Alcohol/Chitosan blend via laser ablation for electrical conductivity enhancement. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128814] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Okasha A, Abdelghany A, Wassel AR, Menazea A. Bone bonding augmentation and synergetic attitude of gamma-irradiated modified borate bioglass. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.109018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Menazea A, Ahmed M. Wound healing activity of Chitosan/Polyvinyl Alcohol embedded by gold nanoparticles prepared by nanosecond laser ablation. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128401] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|