1
|
Beytür S, Essiz S, Özuğur Uysal B. Investigation of Structural and Antibacterial Properties of WS 2-Doped ZnO Nanoparticles. ACS OMEGA 2024; 9:4037-4049. [PMID: 38284036 PMCID: PMC10809239 DOI: 10.1021/acsomega.3c09041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/28/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
ZnO nanoparticles, well-known for their structural, optical, and antibacterial properties, are widely applied in diverse fields. The doping of different materials to ZnO, such as metals or metal oxides, is known to ameliorate its properties. Here, nanofilms composed of ZnO doped with WS2 at 5, 15, and 25% ratios are synthesized, and their properties are investigated. Supported by molecular docking analyses, the enhancement of the bactericidal properties after the addition of WS2 at different ratios is highlighted and supported by the inhibitory interaction of residues playing a crucial role in the bacterial survival through the targeting of proteins of interest.
Collapse
Affiliation(s)
- Sercan Beytür
- Faculty of Engineering and
Natural Sciences, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey
| | - Sebnem Essiz
- Faculty of Engineering and
Natural Sciences, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey
| | - Bengü Özuğur Uysal
- Faculty of Engineering and
Natural Sciences, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey
| |
Collapse
|
2
|
Ragab H. Enhancement in optical, thermal and electrical properties of Polyvinyl pyrrolidone/ polyethylene oxide matrix-based nanocomposites for advanced flexible optoelectronic technologies considering nanoceramic zinc oxide/titanium dioxide filler. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Alrebdi TA, Rezk RA, Alghamdi SM, Ahmed HA, Alkallas FH, Pashameah RA, Mostafa AM, Mwafy EA. Photocatalytic Performance Improvement by Doping Ag on ZnO/MWCNTs Nanocomposite Prepared with Pulsed Laser Ablation Method Based Photocatalysts Degrading Rhodamine B Organic Pollutant Dye. MEMBRANES 2022; 12:877. [PMID: 36135895 PMCID: PMC9505665 DOI: 10.3390/membranes12090877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
ZnO/MWCNTs nanocomposite has significant potential in photocatalytic and environmental treatment. Unfortunately, its photocatalytic efficacy is not high enough due to its poor light absorbance and quick recombination of photo-generated carriers, which might be improved by incorporation with noble metal nanoparticles. Herein, Ag-doped ZnO/MWCNTs nanocomposite was prepared using a pulsed laser ablation approach in the liquid media and examined as a degradable catalyst for Rhodamine B. (RhB). Different techniques were used to confirm the formation of the nanostructured materials (ZnO and Ag) and the complete interaction between them and MWCNTs. X-ray diffraction pattern revealed the hexagonal wurtzite crystal structure of ZnO and Ag. Additionally, UV-visible absorption spectrum was used to study the change throughout the shift in the transition energies, which affected the photocatalytic degradation. Furthermore, the morphological investigation by a scanning electron microscope showed the successful embedding and decoration of ZnO and Ag on the outer surface of CNTs. Moreover, the oxidation state of the formed final nanocomposite was investigated via an X-ray photoelectron spectrometer. After that, the photocatalytic degradations of RhB were tested using the prepared catalysts. The results showed that utilizing Ag significantly impacted the photo degradation of RhB by lowering the charge carrier recombination, leading to 95% photocatalytic degradation after 12 min. The enhanced photocatalytic performance of the produced nanocomposite was attributed to the role of the Ag dopant in generating more active oxygen species. Moreover, the impacts of the catalyst amount, pH level, and contact time were discussed.
Collapse
Affiliation(s)
- Tahani A. Alrebdi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Reham A. Rezk
- Higher Technological Institute, 10th of Ramadan City, 6th of October Branch, 3rd Zone, 7th Section, 6th of October City, 10th of Ramadan 44629, Egypt
| | - Shoug M. Alghamdi
- Department of Physics, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia
| | - Hoda A. Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
- Chemistry Department, College of Sciences, Taibah University, Yanbu 46423, Saudi Arabia
| | - Fatemah H. Alkallas
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Ayman M. Mostafa
- Spectroscopy Department, Physics Division, National Research Centre, 33 El Bohouth st. (Former El Tahrir st.), Dokki, Giza 12622, Egypt
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, 33 El Bohouth st. (Former El Tahrir st.), Dokki, Giza 12622, Egypt
| | - Eman A. Mwafy
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, 33 El Bohouth st. (Former El Tahrir st.), Dokki, Giza 12622, Egypt
- Physical Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
4
|
Al-luhaibi AA, Sendi RK. Synthesis, potential of hydrogen activity, biological and chemical stability of zinc oxide nanoparticle preparation by sol–gel: A review. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Synthesis, characterization, and anti-cancer potential study of Ag-MgO nanocomposite. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Formaldehyde Electrochemical Sensor using Graphite Paste-modified Green Synthesized Zinc Oxide Nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Álvarez-Chimal R, García-Pérez VI, Álvarez-Pérez MA, Tavera-Hernández R, Reyes-Carmona L, Martínez-Hernández M, Arenas-Alatorre JÁ. Influence of the particle size on the antibacterial activity of green synthesized zinc oxide nanoparticles using Dysphania ambrosioides extract, supported by molecular docking analysis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103804] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Subashini K, Prakash S, Sujatha V. Biological applications of green synthesized zinc oxide and nickel oxide nanoparticles mediated poly(glutaric acid-co-ethylene glycol-co-acrylic acid) polymer nanocomposites. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Pashameah RA, Ibrahium HA, Awwad NS, Farea MO, Ahmed HA, El-Morsy MA, Menazea AA. Modification and development of the optical, structural, thermal and electrical characterization of Chitosan incorporated with Au/Bi2O3/Mo NPs fabricated by laser ablation. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Vignesh K, Sivaganesh D, Saravanakumar S, Rani MP. Ho 3+-Induced ZnO: Structural, Electron Density Distribution and Antibacterial Activity for Biomedical Application. Appl Biochem Biotechnol 2022; 195:3941-3965. [PMID: 35298766 DOI: 10.1007/s12010-022-03865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
Abstract
The current investigation focused on the synthesis and characterization of Zn1-xHoxO (X = 0, 0.02, 0.04, 0.06, and 0.08) materials. The rare-earth Ho3+-doped ZnO materials have been prepared using a chemical precipitation process. The phase pure hexagonal structured ZnO crystal system has been observed by powder X-ray diffraction (XRD) characterization. The detailed structural analysis of prepared materials has been investigated by the Rietveld refinement method. The surface morphology and elemental composition of the prepared materials have been characterized using scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDAX). The presence of vibrational links associated with various functional groups has been displayed by FTIR spectroscopy. The energy gap of synthesized materials has been studied using UV-Vis spectroscopy. To study the luminescence activity of produced materials, photoluminescence (PL) analysis has been utilized. The light-green emission at around 507 nm has been obtained by synthesized materials under 380-nm excitation. In addition, the electron density distribution has been accomplished in synthesized materials. At 6% of Ho3+, substituted ZnO exposes the maximum covalent and ionic nature between Zn-O bond along with horizontal and vertical axis, respectively. Moreover, the antibacterial activity of synthesized materials has been done through Proteus vulgaris and Enterococcus faecalis. Following that the destruction of human red blood cells has been examined by hemolysis investigation. All experimental results suggested that the 6% of Ho3+ dopant is the optimized level of ZnO host lattice. The present work paves a promising path to get efficient material for biomedical applications.
Collapse
Affiliation(s)
- K Vignesh
- Research Centre & PG, Department of Physics, The Madura College, Madurai, Tamil Nadu, 625011, India
| | - D Sivaganesh
- Department of Physics, Kalasalingam Academy of Research and Education, Krishnan Kovil, Tamil Nadu, 626126, India
| | - S Saravanakumar
- Department of Physics, Kalasalingam Academy of Research and Education, Krishnan Kovil, Tamil Nadu, 626126, India
| | - M Prema Rani
- Research Centre & PG, Department of Physics, The Madura College, Madurai, Tamil Nadu, 625011, India.
| |
Collapse
|
11
|
Deng C, Jiang M, Wang D, Yang Y, Trofimov V, Hu L, Han C. Microstructure and Superior Corrosion Resistance of an In-Situ Synthesized NiTi-Based Intermetallic Coating via Laser Melting Deposition. NANOMATERIALS 2022; 12:nano12040705. [PMID: 35215033 PMCID: PMC8880572 DOI: 10.3390/nano12040705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/30/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023]
Abstract
A nickel–titanium (NiTi)-based intermetallic coating was in-situ synthesized on a Ti–6Al–4V (TC4) substrate via laser melting deposition (LMD) using Ni–20Cr and TC4 powders. Scanning electron microscopy, X-ray diffraction, a digital microhardness tester and an electrochemical analyzer were used to evaluate the microstructure, Vicker’s microhardness and electrochemical corrosion resistance of the intermetallic coating. Results indicate that the microstructure of the intermetallic coating is composed of NiTi2, NiTi and Ni3Ti. The measured microhardness achieved is as high as ~850 HV0.2, ~2.5 times larger than that of the TC4 alloy, which can be attributed to the solid solution strengthening of Al and Cr, dispersion strengthening of the intermetallic compounds, and grain refinement strengthening from the rapid cooling of LMD. During the electrochemical corrosion of 3.5% NaCl solution, a large amount of Ti ions were released from the intermetallic coating surface and reacted with Cl− ions to form [TiCl6]2 with an increase in corrosion voltage. In further hydrolysis reactions, TiO2 formation occurred when the ratio of [TiCl6]2− reached a critical value. The in-situ synthesized intermetallic coating can achieve a superior corrosion resistance compared to that of the TC4 alloy.
Collapse
Affiliation(s)
- Cheng Deng
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China; (C.D.); (M.J.); (D.W.); (Y.Y.); (V.T.)
| | - Menglong Jiang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China; (C.D.); (M.J.); (D.W.); (Y.Y.); (V.T.)
| | - Di Wang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China; (C.D.); (M.J.); (D.W.); (Y.Y.); (V.T.)
| | - Yongqiang Yang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China; (C.D.); (M.J.); (D.W.); (Y.Y.); (V.T.)
| | - Vyacheslav Trofimov
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China; (C.D.); (M.J.); (D.W.); (Y.Y.); (V.T.)
| | - Lianxi Hu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
| | - Changjun Han
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China; (C.D.); (M.J.); (D.W.); (Y.Y.); (V.T.)
- Correspondence: ; Tel.: +86-13667208949
| |
Collapse
|
12
|
Du J, Zhou J, Zhang L, Yang N, Ding X, Zhang J. Investigation of the Crystallization Characteristics of Intermediate States in Ge 2Sb 2Te 5 Thin Films Induced by Nanosecond Multi-Pulsed Laser Irradiation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:536. [PMID: 35159881 PMCID: PMC8839464 DOI: 10.3390/nano12030536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
Laser pulses can be utilized to induce intermediate states of phase change materials between amorphous and crystalline phases, making phase change materials attractive and applicable for multi-level storage applications. In this paper, intermediate states of Ge2Sb2Te5 thin films induced via employing a nanosecond multi-pulse laser with different energy and pulse duration were performed by Raman spectroscopy, reflection measurement and thermal simulations. Upon laser-crystallized Ge2Sb2Te5 films, optical functions change drastically, leading to distinguishable reflectivity contrasts of intermediate states between amorphous and crystalline phases due to different crystallinity. The changes in optical intensity for laser-crystallized Ge2Sb2Te5 are also accompanied by micro-structure evolution, since high-energy and longer pulses result in higher-level intermediate states (corresponding to high reflection intensity) and largely contribute to the formation of stronger Raman peaks. By employing thermal analysis, we further demonstrated that the variations of both laser fluence and pulse duration play decisive roles in the degree of crystallinity of Ge2Sb2Te5 films. Laser fluence is mainly responsible for the variations in crystallization temperature, while the varying pulse duration has a great impact on the crystallization time. The present study offers a deeper understanding of the crystallization characteristic of phase change material Ge2Sb2Te5.
Collapse
Affiliation(s)
- Jia Du
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Z.); (L.Z.); (N.Y.); (X.D.); (J.Z.)
| | | | | | | | | | | |
Collapse
|
13
|
P. A, B. J, S. B, P. R, S. S. Concert of Zinc Oxide Nanoparticles Synthesized using Cucumis melo by Green Synthesis and the Antibacterial Activity on Pathogenic Bacteria. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Mamonova DV, Vasileva AA, Petrov YV, Koroleva AV, Danilov DV, Kolesnikov IE, Bikbaeva GI, Bachmann J, Manshina AA. Single Step Laser-Induced Deposition of Plasmonic Au, Ag, Pt Mono-, Bi- and Tri-Metallic Nanoparticles. NANOMATERIALS 2021; 12:nano12010146. [PMID: 35010096 PMCID: PMC8746481 DOI: 10.3390/nano12010146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022]
Abstract
Multimetallic plasmonic systems usually have distinct advantages over monometallic nanoparticles due to the peculiarity of the electronic structure appearing in advanced functionality systems, which is of great importance in a variety of applications including catalysis and sensing. Despite several reported techniques, the controllable synthesis of multimetallic plasmonic nanoparticles in soft conditions is still a challenge. Here, mono-, bi- and tri-metallic nanoparticles were successfully obtained as a result of a single step laser-induced deposition approach from monometallic commercially available precursors. The process of nanoparticles formation is starting with photodecomposition of the metal precursor resulting in nucleation and the following growth of the metal phase. The deposited nanoparticles were studied comprehensively with various experimental techniques such as SEM, TEM, EDX, XPS, and UV-VIS absorption spectroscopy. The size of monometallic nanoparticles is strongly dependent on the type of metal: 140–200 nm for Au, 40–60 nm for Ag, 2–3 nm for Pt. Bi- and trimetallic nanoparticles were core-shell structures representing monometallic crystallites surrounded by an alloy of respective metals. The formation of an alloy phase took place between monometallic nanocrystallites of different metals in course of their growth and agglomeration stage.
Collapse
Affiliation(s)
- Daria V Mamonova
- Institute of Chemistry, Saint-Petersburg State University, 26 Universitetskii Prospect, 198504 Saint-Petersburg, Russia
| | - Anna A Vasileva
- Institute of Chemistry, Saint-Petersburg State University, 26 Universitetskii Prospect, 198504 Saint-Petersburg, Russia
| | - Yuri V Petrov
- Department of Physics, Saint-Petersburg State University, Ulyanovskaya 3, 198504 Saint-Petersburg, Russia
| | - Alexandra V Koroleva
- Center for Physical Methods of Surface Investigation, Research Park, Saint Petersburg University, Universitetskiy Prosp. 35, Lit. A, 198504 Saint-Petersburg, Russia
| | - Denis V Danilov
- Interdisciplinary Resource Center for Nanotechnology, Research Park, Saint-Petersburg State University, Ulyanovskaya 1, 198504 Saint-Petersburg, Russia
| | - Ilya E Kolesnikov
- Center for Optical and Laser Materials Research, Research Park, Saint-Petersburg State University, Ulyanovskaya 5, 198504 Saint-Petersburg, Russia
| | - Gulia I Bikbaeva
- Institute of Chemistry, Saint-Petersburg State University, 26 Universitetskii Prospect, 198504 Saint-Petersburg, Russia
| | - Julien Bachmann
- Institute of Chemistry, Saint-Petersburg State University, 26 Universitetskii Prospect, 198504 Saint-Petersburg, Russia
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, IZNF, Cauerstr. 3, 91058 Erlangen, Germany
| | - Alina A Manshina
- Institute of Chemistry, Saint-Petersburg State University, 26 Universitetskii Prospect, 198504 Saint-Petersburg, Russia
| |
Collapse
|
15
|
Alamro FS, Toghan A, Ahmed HA, Mostafa AM, Alakhras AI, Mwafy EA. Multifunctional leather surface embedded with zinc oxide nanoparticles by pulsed laser ablation method. Microsc Res Tech 2021; 85:1611-1617. [PMID: 34958527 DOI: 10.1002/jemt.24022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 01/16/2023]
Abstract
A simple procedure was used to generate and decorate leather structures with different amounts from zinc oxide (ZnO) nanoparticles to produce multifunctional leather structure by pulsed laser ablation method in liquid media based on changing the ablation time in just one-pot method. The impact of varying concentrations of ZnO nanoparticles embedded on the surface of leather on water resistance, water vapor permeability, mechanical characteristics, and UV-shielding efficiency was examined by different characterization techniques like X-ray diffraction, surface area, UV-visible spectroscopy, scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The results showed that the combination between the external functional groups of leather with ZnO nanoparticles was discovered. ZnO nanoparticles effectively coated the surface of leather tissue, as seen by SEM images, and their form a spherical morphology. Leather with ZnO nanoparticles added had the highest capacity to kill Escherichia coli bacteria, exceeding leather without modification and ZnO nanoparticles alone in 50-hr incubation. In addition, the incubation period had a substantial impact on the suppression of Staphylococcus aureus bacteria growth by leather samples.
Collapse
Affiliation(s)
- Fowzia S Alamro
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Arafat Toghan
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.,Chemistry Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Hoda A Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt.,Chemistry Department, College of Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Ayman M Mostafa
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, Giza, Egypt.,Spectroscopy Department, Physics Research Institute, National Research Centre, Giza, Egypt
| | - Abbas I Alakhras
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Eman A Mwafy
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, Giza, Egypt.,Physical Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
16
|
Nanocomposite of PVA/PVP blend incorporated by copper oxide nanoparticles via nanosecond laser ablation for antibacterial activity enhancement. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03975-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Al Mogbel MS, Elabbasy MT, Mohamed RS, Ghoniem AE, El-Kader MFHA, Menazea AA. Improvement in antibacterial activity of Poly Vinyl Pyrrolidone/Chitosan incorporated by graphene oxide NPs via laser ablation. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02838-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Novel Green Synthesis of Zinc Oxide Nanoparticles Using Orange Waste and Its Thermal and Antibacterial Activity. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02074-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Mostafa AM. The enhancement of nonlinear absorption of Zn/ZnO thin film by creation oxygen vacancies via infrared laser irradiation and coating with Ag thin film via pulsed laser deposition. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129407] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Mostafa AM. Preparation and study of nonlinear response of embedding ZnO nanoparticles in PVA thin film by pulsed laser ablation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129007] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Jing Y, Wang R, Wang Q, Xiang Z, Li Z, Gu H, Wang X. An overview of surface-enhanced Raman scattering substrates by pulsed laser deposition technique: fundamentals and applications. ADVANCED COMPOSITES AND HYBRID MATERIALS 2021; 4:885-905. [PMID: 34485823 PMCID: PMC8409082 DOI: 10.1007/s42114-021-00330-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 05/03/2023]
Abstract
Metallic nanoparticles (NPs), as an efficient substrate for surface-enhanced Raman scattering (SERS), attract much interests because of their various shapes and sizes. The appropriate size and morphology of metallic NPs are critical to serve as the substrate for achieving an efficient SERS. Pulsed laser deposition (PLD) is one of the feasible physical methods employed to synthesize metallic NPs with controllable sizes and surface characteristics. It has been recognized to be a successful tool for the deposition of SERS substrates due to its good controllability and high reproducibility in the manufacture of metallic NPs. This review provides an overview about the recent advances for the preparation of SERS substrates by PLD technique. The influences of parameters on the sizes and morphologies of metallic NPs during the deposition processes in PLD technique including laser output parameters, gas medium, liquid medium, substrate temperature, and properties of 3D substrate are presented. The applications of SERS substrates produced by PLD in the environmental monitoring and biomedical analysis are summarized. This knowledge could serve as a guideline for the researchers in exploring further applications of PLD technique in the production of SERS substrate.
Collapse
Affiliation(s)
- Yuting Jing
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Ruijing Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Qunlong Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Zheyuan Xiang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Zhengxin Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Hongbo Gu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Xuefeng Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| |
Collapse
|
22
|
|
23
|
Menazea A, Awwad NS. Pulsed Nd:YAG laser deposition-assisted synthesis of silver/copper oxide nanocomposite thin film for 4-nitrophenol reduction. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.109112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Mwafy EA, Mostafa AM. Tailored MWCNTs/SnO2 decorated cellulose nanofiber adsorbent for the removal of Cu (II) from waste water. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.109172] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
|
26
|
Tommalieh M, Ibrahium HA, Awwad NS, Menazea A. Gold nanoparticles doped Polyvinyl Alcohol/Chitosan blend via laser ablation for electrical conductivity enhancement. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128814] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Chitosan/graphene oxide composite as an effective removal of Ni, Cu, As, Cd and Pb from wastewater. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112980] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|