1
|
Yoon KN, Yoon YS, Hong HJ, Yeom SJ, Park JH, Song BS, Eun JB, Kim JK. Improving storage duration of tomatoes (Solanum lycopersicum) through electron beam technology. J Food Sci 2024; 89:7928-7943. [PMID: 39415076 DOI: 10.1111/1750-3841.17446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024]
Abstract
Electron beam (EB) technology typically consists of high-energy electron streams produced by a linear accelerator. Although promising, the use of EB irradiation as a technique to delay ripening and prevent spoilage in tomatoes has not been extensively investigated. In this study, the effectiveness of EB irradiation in prolonging the shelf life of tomatoes postharvest was investigated. The results indicated that EB irradiation successfully reduced microbial contamination and decay, preserved key quality attributes (such as total soluble solids, titratable acidity, pH, and firmness), and significantly minimized weight loss. Notably, the treatment delayed the biosynthesis of lycopene, a key indicator of ripening, without adversely affecting phenolic content and antioxidant activity, which remained consistent regardless of irradiation. Additionally, different methods for detecting irradiation were evaluated. Thermoluminescence analysis proved to be the most dependable technique, especially for doses exceeding 600 Gy, due to its high sensitivity and specificity. In contrast, photostimulated luminescence and electron spin resonance analyses showed limitations in accurately identifying the irradiation status of foods with high moisture content, such as tomatoes. This study confirms that EB irradiation, while maintaining postharvest quality, extends the shelf life of tomatoes by 5-10 days, suggesting its potential for commercial application in food preservation.
Collapse
Affiliation(s)
- Ki-Nam Yoon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Yeong-Seok Yoon
- Safety and Processing Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Hae-Jung Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Seo-Joon Yeom
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Jong-Heum Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Beom-Seok Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| |
Collapse
|
2
|
Godoi Junior MA, Ribeiro WS, Sousa RND, Noronha BGD, Rocha DI, Tornisielo VL, Mendes KF. Gamma ray irradiation on Swiss cheese estates ( Monstera adansonii): growth, development, and variation. Int J Radiat Biol 2024; 100:1711-1721. [PMID: 39475682 DOI: 10.1080/09553002.2024.2418509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 09/06/2024] [Accepted: 10/06/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE Swiss Cheese (Monstera adansonii) is an ornamental plant valued for its exotic leaves with openings and for the variety of colors. The technique of controlled exposure to gamma radiation was investigated to induce variegation (color change) in the leaves of this plant. MATERIALS AND METHODS Monstera adansonii cuttings were irradiated with different doses of radiation with 60Co gamma rays (0, 1, 5, 10, 15, and 20 Gy) and evaluated for size, color, health, and growth. RESULTS Cuttings irradiated with 1 and 5 Gy exhibited temporary variegation in leaf color, but did not maintain these characteristics over time. Cuttings with higher doses of radiation (10, 15, and 20 Gy) did not survive well and showed a reduction in growth, number of leaves, health, and sprouting rate. CONCLUSIONS This research concludes that gamma radiation can affect the development of cuttings and shows the potential to induce variegation at lower doses, but more studies and prolonged observation are needed to determine whether this technique can produce variegation in a consistent and lasting way in M. adansonii. Therefore, although promising initial results have been observed, it is premature to state that gamma radiation is an effective method for inducing variegation in this plant.
Collapse
Affiliation(s)
| | | | - Rodrigo Nogueira de Sousa
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | | | - Valdemar Luiz Tornisielo
- Laboratory of Ecotoxicology, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Kassio Ferreira Mendes
- Laboratory of Ecotoxicology, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
3
|
Sun R, Chen S, Chen X, Liu X, Zhang F, Wu J, Su L. Enzymatic treatment to improve permeability and quality of cherry tomatoes for production of dried products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2718-2727. [PMID: 37997286 DOI: 10.1002/jsfa.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/02/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Cherry tomatoes are nutritious and favored by consumers. Processing them into dried cherry tomatoes can prolong their storage life and improve their flavor. The pretreatment of tomato pericarp is crucial for the subsequent processing. However, the traditional physical and chemical treatments of tomato pericarp generally cause nutrient loss and environmental pollution. RESULTS In this study, a novel enzymatic method for cherry tomatoes was performed using mixed enzymes containing cutinase, cellulase and pectinase. Results showed that the pericarp permeability of cherry tomatoes was effectively improved due to enzymatic treatment. Changes in the microscopic structure and composition of the cuticle were revealed. After treatment with different concentrations of enzymes, cherry tomatoes exhibited higher pericarp permeability and sensory quality to varying degrees. The lycopene content and total polyphenol content significantly increased 2.4- and 1.45-fold, respectively. In addition, the satisfactory effect of the six-time reuse of enzymes on cherry tomatoes could still reach the same level as the initial effect, which effectively reduced the cost of production. CONCLUSIONS This study revealed for the first time that a mixed enzymatic treatment consisting of cutinase, pectinase and cellulase could effectively degrade the cuticle, enhance the pericarp permeability and improve the quality of cherry tomatoes, with the advantages of being mildly controllable and environmentally friendly, providing a new strategy for the processing of dried cherry tomatoes. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruyu Sun
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Shiheng Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Xiaoqian Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Xiaqing Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Fengshan Zhang
- Shangdong Huatai Paper Co. Ltd & Shangdong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd, Dongying, China
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Lingqia Su
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Yoon KN, Yoon YS, Hong HJ, Park JH, Song BS, Eun JB, Kim JK. Gamma irradiation delays tomato (Solanum lycopersicum) ripening by inducing transcriptional changes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6640-6653. [PMID: 37267467 DOI: 10.1002/jsfa.12760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/02/2023] [Accepted: 06/02/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Tomato (Solanum lycopersicum) has a relatively short shelf life as a result of rapid ripening, limiting its transportability and marketability. Recently, gamma irradiation has emerged as a viable method for delaying tomato fruit ripening. Although few studies have shown that gamma irradiation delays the ripening of tomatoes, the underlying mechanism remains unknown. Therefore, the present study aimed to examine the effects of gamma irradiation on tomato fruit ripening and the underlying mechanisms using transcriptomics. RESULTS Following gamma irradiation, the total microbial count, weight loss, and decay rate of tomatoes significantly reduced during storage. Furthermore, the redness (a*), color change (∆E), and lycopene content of gamma-irradiated tomatoes decreased in a dose-dependent manner during storage. Moreover, gamma irradiation significantly upregulated the expression levels of genes associated with DNA, chloroplast, and oxidative damage repairs, whereas those of ethylene and auxin signaling-, ripening-, and cell wall metabolism-related, as well as carotenoid genes, were downregulated. CONCLUSION Gamma irradiation effectively delayed ripening by downregulating the expression of ripening-related genes and inhibiting microbial growth, which prevented decay and prolonged the shelf life of tomatoes. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ki-Nam Yoon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Yeong-Seok Yoon
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Hae-Jung Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Jong-Heum Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Beom-Seok Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| |
Collapse
|
5
|
Omac B, Moreira RG, Castell‐Perez EM. Integrated electron beam irradiation treatment with hydrogen peroxide aqueous solution to inactivate
Salmonella
on grape tomatoes. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Basri Omac
- Department of Biological and Agricultural Engineering Texas A&M University College Station Texas USA
- Department of Food Processing Munzur University Tunceli Turkey
| | - Rosana G. Moreira
- Department of Biological and Agricultural Engineering Texas A&M University College Station Texas USA
| | - Elena M. Castell‐Perez
- Department of Biological and Agricultural Engineering Texas A&M University College Station Texas USA
| |
Collapse
|
6
|
Cheng Y, Dong H, Wu Y, Xiao K. Preparation of an Amidated Graphene Oxide/Sulfonated Poly Ether Ether Ketone (AGO/SPEEK) Modified Atmosphere Packaging for the Storage of Cherry Tomatoes. Foods 2021; 10:foods10030552. [PMID: 33800032 PMCID: PMC8001178 DOI: 10.3390/foods10030552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 11/16/2022] Open
Abstract
The shelf life of cherry tomatoes is short so that new and efficient preservation techniques or procedures are required to reduce postharvest losses. This study focused on the development of a sulfonated poly ether ether ketone (SPEEK) film incorporated with amidated graphene oxide (AGO), for the storage of cherry tomatoes in modified atmosphere packaging. The mechanical properties, gas permeability, and moisture permeability were subsequently tested. The evolution of attributes related to shelf life, such as gas composition, physicochemical properties, and sensory properties were also monitored during storage trials. AGO, as an inorganic filler, increases the thermal stability and mechanical properties of SPEEK-based films, while it reduces the water absorption, swelling rate, and moisture permeability. Importantly, all the AGO/SPEEK films exhibited enhanced gas permeability and selective permeability of CO2/O2 relative to the SPEEK film. Moreover, 0.9% (w/w) AGO/SPEEK film showed an enhanced permeability coefficient of CO2, corresponding to an increase of 50.7%. It could further improve the selective coefficient of CO2/O2 to 67.1%. The results of preservation at 8 °C revealed that: 0.9% (w/w) AGO/SPEEK film was significantly effective at maintaining the quality and extending the shelf life of cherry tomatoes from 15 to 30 days, thereby suggesting the potential for applying AGO-incorporated SPEEK films for food packaging materials.
Collapse
Affiliation(s)
- Yao Cheng
- School of Food Science and Technology, South China University of Technology, 381, Wushan Rd., Tianhe District, Guangzhou 510641, China; (Y.C.); (Y.W.)
| | - Hao Dong
- School of Food Science and Technology, Zhongkai University of Agriculture and Engineering, 24, Dongsha Street, Fangzhi Rd., Haizhu District, Guangzhou 510225, China;
| | - Yuanyue Wu
- School of Food Science and Technology, South China University of Technology, 381, Wushan Rd., Tianhe District, Guangzhou 510641, China; (Y.C.); (Y.W.)
| | - Kaijun Xiao
- School of Food Science and Technology, South China University of Technology, 381, Wushan Rd., Tianhe District, Guangzhou 510641, China; (Y.C.); (Y.W.)
- Correspondence: ; Tel.: +86-020-87113848
| |
Collapse
|