1
|
Antunes J, Pinheiro T, Marques I, Pires S, Botelho MF, Sampaio JM, Belchior A. Do cell culturing influence the radiosensitizing effect of gold nanoparticles: a Monte Carlo study. EJNMMI Phys 2025; 12:41. [PMID: 40249448 PMCID: PMC12008099 DOI: 10.1186/s40658-025-00746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Cell culture can be categorized into two major types: adherent and suspension. Both are used in a range of diverse research applications, exhibiting Pros and Cons, depending on what is being studied. In the field of Internal Emitters (IE), different morphological features such as nuclei size, cytoplasm ratio, and shape could influence its non-uniformity deposition and thus impact on the biological outcome. In this work we tested the hypothesis that cellular morphology differences, offered by adherent and suspension cultures, influence the radiosensitizing effect of gold nanoparticles (AuNPs). METHODS Using two PC3 cellular models, taken using confocal microscopy, we conducted Monte Carlo simulations to investigate the effects of different irradiation conditions on cellular Survival Fractions (SF). Our simulations focused on cells exposed to two distinct irradiation sources: 60Co and 14 MeV protons, along both the longer and shorter axes of the cells to assess directional influences on cell survival. Additionally, we compared the SF of cells adherent to the culture flask with those in suspension, reflecting different experimental and potentially clinical scenarios. RESULTS In the absence of AuNPs, neither cell type nor irradiation direction significantly affected SF for the radiation types tested. However, with AuNPs present, SF demonstrated a strong dependence on irradiation direction and cell morphology. CONCLUSIONS Our results indicate that the direction of irradiation plays a crucial role in determining the effectiveness of AuNPs in reducing SF. Furthermore, the results suggest that using cells in suspension will reduce the dependence of cell survival on the beam direction during irradiation, regardless of the radiation quality used.
Collapse
Affiliation(s)
- J Antunes
- Laboratório de Instrumentação e Física Experimental de Partículas, Av. Prof. Gama Pinto 2, Lisboa, 1649-003, Portugal.
- Departamento de Física da Faculdade de Ciências da Universidade de Lisboa, Rua Ernesto de Vasconcelos, Lisboa, 1749-016, Portugal.
| | - T Pinheiro
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Bobadela LRS, 2695-066, Portugal
- iBB- Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal
| | - I Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Univ Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Univ Coimbra, Coimbra, 3000-548, Portugal
| | - S Pires
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Univ Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Univ Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, 3004-561, Portugal
| | - M Filomena Botelho
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Univ Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Univ Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, 3004-561, Portugal
| | - J M Sampaio
- Laboratório de Instrumentação e Física Experimental de Partículas, Av. Prof. Gama Pinto 2, Lisboa, 1649-003, Portugal
- Departamento de Física da Faculdade de Ciências da Universidade de Lisboa, Rua Ernesto de Vasconcelos, Lisboa, 1749-016, Portugal
| | - A Belchior
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Bobadela LRS, 2695-066, Portugal.
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Bobadela LRS, 2695-066, Portugal.
| |
Collapse
|
2
|
Chow JCL. Monte Carlo Simulations in Nanomedicine: Advancing Cancer Imaging and Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:117. [PMID: 39852732 PMCID: PMC11767847 DOI: 10.3390/nano15020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Monte Carlo (MC) simulations have become important in advancing nanoparticle (NP)-based applications for cancer imaging and therapy. This review explores the critical role of MC simulations in modeling complex biological interactions, optimizing NP designs, and enhancing the precision of therapeutic and diagnostic strategies. Key findings highlight the ability of MC simulations to predict NP bio-distribution, radiation dosimetry, and treatment efficacy, providing a robust framework for addressing the stochastic nature of biological systems. Despite their contributions, MC simulations face challenges such as modeling biological complexity, computational demands, and the scarcity of reliable nanoscale data. However, emerging technologies, including hybrid modeling approaches, high-performance computing, and quantum simulation, are poised to overcome these limitations. Furthermore, novel advancements such as FLASH radiotherapy, multifunctional NPs, and patient-specific data integration are expanding the capabilities and clinical relevance of MC simulations. This topical review underscores the transformative potential of MC simulations in bridging fundamental research and clinical translation. By facilitating personalized nanomedicine and streamlining regulatory and clinical trial processes, MC simulations offer a pathway toward more effective, tailored, and accessible cancer treatments. The continued evolution of simulation techniques, driven by interdisciplinary collaboration and technological innovation, ensures that MC simulations will remain at the forefront of nanomedicine's progress.
Collapse
Affiliation(s)
- James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada; ; Tel.: +1-416-946-4501
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
3
|
Thomas L, Schwarze M, Rabus H. Radial dependence of ionization clustering around a gold nanoparticle irradiated by X-rays under charged particle equilibrium. Phys Med Biol 2024; 69:185014. [PMID: 39134027 DOI: 10.1088/1361-6560/ad6e4f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
Objective.This work explores the enhancement of ionization clustering and its radial dependence around a gold nanoparticle (NP), indicative of the induction of DNA lesions, a potential trigger for cell-death.Approach.Monte Carlo track structure simulations were performed to determine (a) the spectral fluence of incident photons and electrons in water around a gold NP under charged particle equilibrium conditions and (b) the density of ionization clusters produced on average as well as conditional on the occurrence of at least one interaction in the NP using Associated Volume Clustering. Absorbed dose was determined for comparison with a recent benchmark intercomparison. Reported quantities are normalized to primary fluence, allowing to establish a connection to macroscopic dosimetric quantities.Main results.The modification of the electron spectral fluence by the gold NP is minor and mainly occurs at low energies. The net fluence of electrons emitted from the NP is dominated by electrons resulting from photon interactions. Similar to the known dose enhancement, increased ionization clustering is limited to a distance from the NP surface of up to200nm. The number of clusters per energy imparted is increased at distances of up to150nm, and accordingly the enhancement in clustering notably surpasses that of dose enhancement. Smaller NPs cause noticeable peaks in the conditional frequency of clusters between50nm-100nmfrom the NP surface.Significance.This work shows that low energy electrons emitted by NPs lead to an increase of ionization clustering in their vicinity exceeding that of energy imparted. While the electron component of the radiation field plays an important role in determining the background contribution to ionization clustering and energy imparted, the dosimetric effects of NPs are governed by the interplay of secondary electron production by photon interaction and their ability to leave the NP.
Collapse
Affiliation(s)
- Leo Thomas
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, D-10587 Berlin, Germany
| | - Miriam Schwarze
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, D-10587 Berlin, Germany
| | - Hans Rabus
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, D-10587 Berlin, Germany
| |
Collapse
|
4
|
Taheri A, Khandaker MU, Moradi F, Bradley DA. A simulation study on the radiosensitization properties of gold nanorods. Phys Med Biol 2024; 69:045029. [PMID: 38286017 DOI: 10.1088/1361-6560/ad2380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
Objective. Gold nanorods (GNRs) have emerged as versatile nanoparticles with unique properties, holding promise in various modalities of cancer treatment through drug delivery and photothermal therapy. In the rapidly evolving field of nanoparticle radiosensitization (NPRS) for cancer therapy, this study assessed the potential of gold nanorods as radiosensitizing agents by quantifying the key features of NPRS, such as secondary electron emission and dose enhancement, using Monte Carlo simulations.Approach. Employing the TOPAS track structure code, we conducted a comprehensive evaluation of the radiosensitization behavior of spherical gold nanoparticles and gold nanorods. We systematically explored the impact of nanorod geometry (in particular size and aspect ratio) and orientation on secondary electron emission and deposited energy ratio, providing validated results against previously published simulations.Main results. Our findings demonstrate that gold nanorods exhibit comparable secondary electron emission to their spherical counterparts. Notably, nanorods with smaller surface-area-to-volume ratios (SA:V) and alignment with the incident photon beam proved to be more efficient radiosensitizing agents, showing superiority in emitted electron fluence. However, in the microscale, the deposited energy ratio (DER) was not markedly influenced by the SA:V of the nanorod. Additionally, our findings revealed that the geometry of gold nanoparticles has a more significant impact on the emission of M-shell Auger electrons (with energies below 3.5 keV) than on higher-energy electrons.Significance. This research investigated the radiosensitization properties of gold nanorods, positioning them as promising alternatives to the more conventionally studied spherical gold nanoparticles in the context of cancer research. With increasing interest in multimodal cancer therapy, our findings have the potential to contribute valuable insights into the perspective of gold nanorods as effective multipurpose agents for synergistic photothermal therapy and radiotherapy. Future directions may involve exploring alternative metallic nanorods as well as further optimizing the geometry and coating materials, opening new possibilities for more effective cancer treatments.
Collapse
Affiliation(s)
- Ali Taheri
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
| | - Mayeen Uddin Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
- Faculty of Graduate Studies, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Farhad Moradi
- Fibre Optics Research Centre, Faculty of Engineering, Multimedia University, Jalan Multimedia 63100, Cyberjaya, Malaysia
| | - David Andrew Bradley
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
- School of Mathematics and Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
| |
Collapse
|
5
|
Nosrati H, Ghaffarlou M, Salehiabar M, Mousazadeh N, Abhari F, Barsbay M, Ertas YN, Rashidzadeh H, Mohammadi A, Nasehi L, Rezaeejam H, Davaran S, Ramazani A, Conde J, Danafar H. Magnetite and bismuth sulfide Janus heterostructures as radiosensitizers for in vivo enhanced radiotherapy in breast cancer. BIOMATERIALS ADVANCES 2022; 140:213090. [PMID: 36027669 DOI: 10.1016/j.bioadv.2022.213090] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Janus heterostructures based on bimetallic nanoparticles have emerged as effective radiosensitizers owing to their radiosensitization capabilities in cancer cells. In this context, this study aims at developing a novel bimetallic nanoradiosensitizer, Bi2S3-Fe3O4, to enhance tumor accumulation and promote radiation-induced DNA damage while reducing adverse effects. Due to the presence of both iron oxide and bismuth sulfide metallic nanoparticles in these newly developed nanoparticle, strong radiosensitizing capacity is anticipated through the generation of reactive oxygen species (ROS) to induce DNA damage under X-Ray irradiation. To improve blood circulation time, biocompatibility, colloidal stability, and tuning surface functionalization, the surface of Bi2S3-Fe3O4 bimetallic nanoparticles was coated with bovine serum albumin (BSA). Moreover, to achieve higher cellular uptake and efficient tumor site specificity, folic acid (FA) as a targeting moiety was conjugated onto the bimetallic nanoparticles, termed Bi2S3@BSA-Fe3O4-FA. Biocompatibility, safety, radiation-induced DNA damage by ROS activation and generation, and radiosensitizing ability were confirmed via in vitro and in vivo assays. The administration of Bi2S3@BSA-Fe3O4-FA in 4T1 breast cancer murine model upon X-ray radiation revealed highly effective tumor eradication without causing any mortality or severe toxicity in healthy tissues. These findings offer compelling evidence for the potential capability of Bi2S3@BSA-Fe3O4-FA as an ideal nanoparticle for radiation-induced cancer therapy and open interesting avenues of future research in this area.
Collapse
Affiliation(s)
- Hamed Nosrati
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan 45371-38791, Iran
| | | | - Marziyeh Salehiabar
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Navid Mousazadeh
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Abhari
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Murat Barsbay
- Hacettepe University, Department of Chemistry, Beytepe, Ankara 06800, Turkey
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey; Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Hamid Rashidzadeh
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Ali Mohammadi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Nasehi
- Department of Medical Laboratory, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Rezaeejam
- Department of Radiology, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box 51656-65811, Tabriz, Iran
| | - Ali Ramazani
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan 45371-38791, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - João Conde
- ToxOmics, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | - Hossein Danafar
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey.
| |
Collapse
|
6
|
Sadiq A, Chow JCL. Evaluation of Dosimetric Effect of Bone Scatter on Nanoparticle-Enhanced Orthovoltage Radiotherapy: A Monte Carlo Phantom Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172991. [PMID: 36080028 PMCID: PMC9457938 DOI: 10.3390/nano12172991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/04/2023]
Abstract
In nanoparticle (NP)-enhanced orthovoltage radiotherapy, bone scatter affected dose enhancement at the skin lesion in areas such as the forehead, chest wall, and knee. Since each of these treatment sites have a bone, such as the frontal bone, rib, or patella, underneath the skin lesion and this bone is not considered in dose delivery calculations, uncertainty arises in the evaluation of dose enhancement with the addition of NPs in radiotherapy. To investigate the impact of neglecting the effect of bone scatter, Monte Carlo simulations based on heterogeneous phantoms were carried out to determine and compare the dose enhancement ratio (DER), when a bone was and was not present underneath the skin lesion. For skin lesions with added NPs, Monte Carlo simulations were used to calculate the DER values using different elemental NPs (gold, platinum, silver, iodine, as well as iron oxide), in varying NP concentrations (3−40 mg/mL), at two different photon beam energies (105 and 220 kVp). It was found that DER values at the skin lesion increased with the presence of bone when there was a higher atomic number of NPs, a higher NP concentration, and a lower photon beam energy. When comparing DER values with and without bone, using the same NP elements, NP concentration, and beam energy, differences were found in the range 0.04−3.55%, and a higher difference was found when the NP concentration increased. By considering the uncertainty in the DER calculation, the effect of bone scatter became significant to the dose enhancement (>2%) when the NP concentration was higher than 18 mg/mL. This resulted in an underestimation of dose enhancement at the skin lesion, when the bone underneath the tumour was neglected during orthovoltage radiotherapy.
Collapse
Affiliation(s)
- Afia Sadiq
- Department of Medical Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
7
|
Influence of PEG-coated Bismuth Oxide Nanoparticles on ROS Generation by Electron Beam Radiotherapy. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2022. [DOI: 10.2478/pjmpe-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Introduction: Nanoparticles (NPs) have been proven to enhance radiotherapy doses as radiosensitizers. The introduction of coating materials such as polyethylene glycol (PEG) to NPs could impact the NPs’ biocompatibility and their effectiveness as radiosensitizers. Optimization of surface coating is a crucial element to ensure the successful application of NPs as a radiosensitizer in radiotherapy. This study aims to investigate the influence of bismuth oxide NPs (BiONPs) coated with PEG on reactive oxygen species (ROS) generation on HeLa cervical cancer cell line.
Material and methods: Different PEG concentrations (0.05, 0.10, 0.15 and 0.20 mM) were used in the synthesis of the NPs. The treated cells were irradiated with 6 and 12 MeV electron beams with a delivered dose of 3 Gy. The reactive oxygen species (ROS) generation was measured immediately after and 3 hours after irradiation.
Results: The intracellular ROS generation was found to be slightly influenced by electron beam energy and independent of the PEG concentrations. Linear increments of ROS percentages over the 3 hours of incubation time were observed.
Conclusions: Finally, the PEG coating might not substantially affect the ROS generated and thus emphasizing the functionalized BiONPs application as the radiosensitizer for electron beam therapy.
Collapse
|
8
|
Geant4 track structure simulation of electron beam interaction with a gold nanoparticle. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Pan H, Wang X, Feng A, Cheng Q, Chen X, He X, Qin X, Sha X, Fu S, Chi C, Wang X. Nanoparticle radiosensitization: from extended local effect modeling to a survival modification framework of compound Poisson additive killing and its carbon dots validation. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac4c48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. To construct an analytical model instead of local effect modeling for the prediction of the biological effectiveness of nanoparticle radiosensitization. Approach. An extended local effects model is first proposed with a more comprehensive description of the nanoparticles mediated local killing enhancements, but meanwhile puts forward challenging issues that remain difficult and need to be further studied. As a novel method instead of local effect modeling, a survival modification framework of compound Poisson additive killing is proposed, as the consequence of an independent additive killing by the assumed equivalent uniform doses of individual nanoparticles per cell under the LQ model. A compound Poisson killing (CPK) model based on the framework is thus derived, giving a general expression of nanoparticle mediated LQ parameter modification. For practical use, a simplified form of the model is also derived, as a concentration dependent correction only to the α parameter, with the relative correction (α″/α) dominated by the mean number, and affected by the agglomeration of nanoparticles per cell. For different agglomeration state, a monodispersion model of the dispersity factor η = 1, and an agglomeration model of 2/3 < η < 1, are provided for practical prediction of (α″/α) value respectively. Main results. Initial validation by the radiosensitization of HepG2 cells by carbon dots showed a high accuracy of the CPK model. In a safe range of concentration (0.003–0.03 μg μl−1) of the carbon dots, the prediction errors of the monodispersion and agglomeration models were both within 2%, relative to the clonogenic survival data of the sensitized HepG2 cells. Significance. The compound Poisson killing model provides a novel approach for analytical prediction of the biological effectiveness of nanoparticle radiosensitization, instead of local effect modeling.
Collapse
|
10
|
Silva F, D’Onofrio A, Mendes C, Pinto C, Marques A, Campello MPC, Oliveira MC, Raposinho P, Belchior A, Di Maria S, Marques F, Cruz C, Carvalho J, Paulo A. Radiolabeled Gold Nanoseeds Decorated with Substance P Peptides: Synthesis, Characterization and In Vitro Evaluation in Glioblastoma Cellular Models. Int J Mol Sci 2022; 23:ijms23020617. [PMID: 35054798 PMCID: PMC8775581 DOI: 10.3390/ijms23020617] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023] Open
Abstract
Despite some progress, the overall survival of patients with glioblastoma (GBM) remains extremely poor. In this context, there is a pressing need to develop innovative therapy strategies for GBM, namely those based on nanomedicine approaches. Towards this goal, we have focused on nanoparticles (AuNP-SP and AuNP-SPTyr8) with a small gold core (ca. 4 nm), carrying DOTA chelators and substance P (SP) peptides. These new SP-containing AuNPs were characterized by a variety of analytical techniques, including TEM and DLS measurements and UV-vis and CD spectroscopy, which proved their high in vitro stability and poor tendency to interact with plasma proteins. Their labeling with diagnostic and therapeutic radionuclides was efficiently performed by DOTA complexation with the trivalent radiometals 67Ga and 177Lu or by electrophilic radioiodination with 125I of the tyrosyl residue in AuNP-SPTyr8. Cellular studies of the resulting radiolabeled AuNPs in NKR1-positive GBM cells (U87, T98G and U373) have shown that the presence of the SP peptides has a crucial and positive impact on their internalization by the tumor cells. Consistently, 177Lu-AuNP-SPTyr8 showed more pronounced radiobiological effects in U373 cells when compared with the non-targeted congener 177Lu-AuNP-TDOTA, as assessed by cell viability and clonogenic assays and corroborated by Monte Carlo microdosimetry simulations.
Collapse
Affiliation(s)
- Francisco Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
- Correspondence: (F.S.); (A.P.)
| | - Alice D’Onofrio
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
| | - Carolina Mendes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
| | - Catarina Pinto
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
| | - Ana Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Maria Cristina Oliveira
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Paula Raposinho
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Ana Belchior
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
| | - Salvatore Di Maria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (C.C.); (J.C.)
| | - Josué Carvalho
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (C.C.); (J.C.)
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Correspondence: (F.S.); (A.P.)
| |
Collapse
|
11
|
Impact of the Spectral Composition of Kilovoltage X-rays on High-Z Nanoparticle-Assisted Dose Enhancement. Int J Mol Sci 2021; 22:ijms22116030. [PMID: 34199667 PMCID: PMC8199749 DOI: 10.3390/ijms22116030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
Nanoparticles (NPs) with a high atomic number (Z) are promising radiosensitizers for cancer therapy. However, the dependence of their efficacy on irradiation conditions is still unclear. In the present work, 11 different metal and metal oxide NPs (from Cu (ZCu = 29) to Bi2O3 (ZBi = 83)) were studied in terms of their ability to enhance the absorbed dose in combination with 237 X-ray spectra generated at a 30–300 kVp voltage using various filtration systems and anode materials. Among the studied high-Z NP materials, gold was the absolute leader by a dose enhancement factor (DEF; up to 2.51), while HfO2 and Ta2O5 were the most versatile because of the largest high-DEF region in coordinates U (voltage) and Eeff (effective energy). Several impacts of the X-ray spectral composition have been noted, as follows: (1) there are radiation sources that correspond to extremely low DEFs for all of the studied NPs, (2) NPs with a lower Z in some cases can equal or overcome by the DEF value the high-Z NPs, and (3) the change in the X-ray spectrum caused by a beam passing through the matter can significantly affect the DEF. All of these findings indicate the important role of carefully planning radiation exposure in the presence of high-Z NPs.
Collapse
|
12
|
Rabus H, Li WB, Villagrasa C, Schuemann J, Hepperle PA, de la Fuente Rosales L, Beuve M, Di Maria S, Klapproth AP, Li CY, Poignant F, Rudek B, Nettelbeck H. Intercomparison of Monte Carlo calculated dose enhancement ratios for gold nanoparticles irradiated by X-rays: Assessing the uncertainty and correct methodology for extended beams. Phys Med 2021; 84:241-253. [PMID: 33766478 DOI: 10.1016/j.ejmp.2021.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Results of a Monte Carlo code intercomparison exercise for simulations of the dose enhancement from a gold nanoparticle (GNP) irradiated by X-rays have been recently reported. To highlight potential differences between codes, the dose enhancement ratios (DERs) were shown for the narrow-beam geometry used in the simulations, which leads to values significantly higher than unity over distances in the order of several tens of micrometers from the GNP surface. As it has come to our attention that the figures in our paper have given rise to misinterpretation as showing 'the' DERs of GNPs under diagnostic X-ray irradiation, this article presents estimates of the DERs that would have been obtained with realistic radiation field extensions and presence of secondary particle equilibrium (SPE). These DER values are much smaller than those for a narrow-beam irradiation shown in our paper, and significant dose enhancement is only found within a few hundred nanometers around the GNP. The approach used to obtain these estimates required the development of a methodology to identify and, where possible, correct results from simulations whose implementation deviated from the initial exercise definition. Based on this methodology, literature on Monte Carlo simulated DERs has been critically assessed.
Collapse
Affiliation(s)
- H Rabus
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany; European Radiation Dosimetry Group (EURADOS) e.V, Neuherberg, Germany
| | - W B Li
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; European Radiation Dosimetry Group (EURADOS) e.V, Neuherberg, Germany
| | - C Villagrasa
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France; European Radiation Dosimetry Group (EURADOS) e.V, Neuherberg, Germany
| | - J Schuemann
- Massachusetts General Hospital & Harvard Medical School, Department of Radiation Oncology, Boston, MA, USA; European Radiation Dosimetry Group (EURADOS) e.V, Neuherberg, Germany
| | - P A Hepperle
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany; Leibniz Universität Hannover, Hannover, Germany
| | | | - M Beuve
- Institut de Physique des 2 Infinis, Université Claude Bernard Lyon 1, Villeurbanne, France; European Radiation Dosimetry Group (EURADOS) e.V, Neuherberg, Germany
| | - S Di Maria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, Portugal; European Radiation Dosimetry Group (EURADOS) e.V, Neuherberg, Germany
| | - A P Klapproth
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; TranslaTUM, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - C Y Li
- Department of Engineering Physics, Tsinghua University, Beijing, China; Nuctech Company Limited, Beijing, China
| | - F Poignant
- Institut de Physique des 2 Infinis, Université Claude Bernard Lyon 1, Villeurbanne, France; NASA Langley Research Center, Hampton, VA, USA
| | - B Rudek
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany; Massachusetts General Hospital & Harvard Medical School, Department of Radiation Oncology, Boston, MA, USA; Perlmutter Cancer Center, NYU Langone Health, New York City, NY, USA
| | - H Nettelbeck
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany; European Radiation Dosimetry Group (EURADOS) e.V, Neuherberg, Germany
| |
Collapse
|