1
|
Al-Kadhi NS, Mostafa AM, Al-Senani GM, Al-Ahmadi AN, Alamro FS, Ahmed HA, Al-Faze R, Elsharkawy WB, Mwafy EA. Catalytic Degradation by Metal-Organic Hybrid Nanocomposites Based on Metal/Metal Oxide Nanostructured Materials Prepared by Pulsed Laser Ablation. Microsc Res Tech 2025. [PMID: 40237401 DOI: 10.1002/jemt.24858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/30/2025] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
The heterojunction based on plasmonic metals of Ag and Cu in the oxide form was synthesized and decorated carbon nanotubes to form Ag-Cu2O/MWCNTs nanocomposites via a pulsed laser ablation process for water treatment. This study presents the synthesis and characterization of Ag/MWCNTs nanocomposites with different amounts of Cu2O NPs using a novel two-step pulsed laser ablation technique for enhanced photocatalytic degradation of Congo Red dye under UV-visible-light irradiation. Structural and optical characterization techniques confirmed the successful formation of highly pure and crystalline nanocomposites, and the coupling of Ag NPs with Cu2O NPs significantly enhanced visible-light absorption, making the nanocomposites highly effective for photocatalytic applications, which were systematically evaluated under varying pH, catalyst dosage, dye concentration, and irradiation time conditions. The results demonstrated that Ag-Cu2O/MWCNTs with 60 min ablation (30min for Cu and 30 min for Ag), Ag-Cu2O/MWCNTs(2), achieved the highest degradation efficiency of 99.43% for Congo Red (CR) dye at pH 8.0 and an optimal catalyst dosage. Kinetic studies and the degradation mechanism revealed that the photodegradation process followed the Langmuir-Hinshelwood pseudo-first-order model, with Ag-Cu2O/MWCNTs(2) exhibiting the fastest degradation rate, outperforming other samples by degrading CR dye. This work underscores the potential of Ag-Cu2O/MWCNTs nanocomposites as highly efficient photocatalysts for environmental remediation, particularly in the degradation of organic pollutants in wastewater. The findings provide valuable insights into optimizing photocatalytic processes for practical applications, offering a promising solution for sustainable water treatment and pollution control.
Collapse
Affiliation(s)
- Nada S Al-Kadhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ayman M Mostafa
- Department of Physics, College of Science, Qassim University, Buraydah, Saudi Arabia
| | - Ghadah M Al-Senani
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ameenah N Al-Ahmadi
- Department of Physics, College of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fowzia S Alamro
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hoda A Ahmed
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu, Saudi Arabia
| | - Rawan Al-Faze
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Wafaa B Elsharkawy
- Physics Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Eman A Mwafy
- Physical Chemistry Department, Institute of Advanced Materials Technology and Mineral Resources, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Mahmoud OA, Omran AA, Gomaa HA, Binsaleh AY, Mohamed MA. Innovative UPLC technique for concurrent quantification of etofenamate and benzyl nicotinate in the presence of methylparaben and benzyl alcohol in their topical cream: Greens, white, and Six Sigma methodologies. Biomed Chromatogr 2024; 38:e6006. [PMID: 39275959 DOI: 10.1002/bmc.6006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024]
Abstract
The efficacious treatment of muscle and joint pain relies heavily on etofenamate (ETO) and benzyl nicotinate (BN), which possess robust anti-inflammatory and pain-relieving properties when paired with methylparaben (MP) or benzyl alcohol (BA). In this study, we have established and validated innovative RP-UPLC methods for assessing ETO and BN in the presence of MP or BA in their dosage forms, employing eight green tools to evaluate their eco-friendliness and effectiveness. Reversed phase-ultra-performance liquid chromatography (RP-UPLC) technique employs a flow rate of 0.3 mL/min on Waters Acquity UPLC BEH Column (C18, 1.7 μm, 100 mm × 2.1 mm), detection at 254 nm using a photo diode array (PDA) detector and mobile phase of 0.05 M KH2PO4 buffer, acetonitrile, and methanol (50:15:35, v/v/v) adjusted pH 6.0 with 0.2% triethylamine. For ETO, BN, MP, and BA, the calibration curves were linear and ranged from 0.005 to 1.0, from 0.001 to 0.2, from 0.002 to 0.08, and from 0.0001 to 0.1 mg/mL, respectively. The correlation value was 0.9999, and the accuracy findings ranged from 98.81% to 100.56%. Consequently, the methodology has been successfully implemented in assay testing for the pharmaceuticals in the presence of the MP or BA, demonstrating the high selectivity of these approaches. The present study presents the Blue Applicability Grade Index (BAGI), an innovative approach that complements green metrics in practical white analytical chemistry. According to the International Council for Harmonisation (ICH) criteria, the procedures were effectively validated.
Collapse
Affiliation(s)
| | - Ahmed A Omran
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University, Cairo, Egypt
| | - Hosni A Gomaa
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University, Cairo, Egypt
| | - Ammena Y Binsaleh
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, P.O. Box 84428, Saudi Arabia
| | | |
Collapse
|
3
|
Farajollahi A, Poursattar Marjani A. Preparation of MWCNT/CoMn 2O 4 nanocomposite for effectual degradation of picric acid via peroxymonosulfate activation. Sci Rep 2024; 14:11475. [PMID: 38769448 PMCID: PMC11636912 DOI: 10.1038/s41598-024-62351-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
In recent years, using nanomaterials based on multi-wall carbon nanotubes (MWCNT) through the activation of peroxymonosulfate (PMS) has attracted more attention to the degradation of organic pollutants. This research presented a new route for the synthesis of MWCNT/CoMn2O4 nanocomposite for the degradation of picric acid using advanced oxidation processes (AOPs). Firstly, CoMn2O4 nanoparticles were prepared and then loaded on MWCNT using ultrasonic waves. The results of various analyzes confirmed the successful loading of nanoparticles on carbon nanotubes. As the degradation process proceeds through oxidation processes, the high electronic conductivity of MWCNT and the active sites of Mn and Co in the nanocomposite play an essential role in activating PMS to generate reactive oxygen species (ROS). An investigation of the reaction mechanism in different conditions showed that the highest speed of picric acid decomposition in the presence of nanocomposite (98%) was in 47 min. However, the scavenger test showed that HO· and SO4·- radicals are more important in the degradation process. Meanwhile, the results showed that removing picric acid using MWCNT/CoMn2O4 was more effective than CoMn2O4 alone and confirmed the interaction effect of MWCNT nanotubes with AB2O4 nanocatalyst.
Collapse
Affiliation(s)
- Ayda Farajollahi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | | |
Collapse
|
4
|
Toghan A, Fawzy A, Alqarni N, Eldesoky AM, Alduaij OK, Farag AA. Effective Treatment Methodology for Environmental Safeguard Catalytic Degradation of Fluconazole by Permanganate Ions in Different Acidic Environments: Kinetics, Mechanistics, RSM, and DFT Modeling. ACS OMEGA 2024; 9:10190-10200. [PMID: 38463285 PMCID: PMC10918786 DOI: 10.1021/acsomega.3c07074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
In this paper, the degradation of fluconazole drug (Flz) was explored kinetically utilizing permanganate ion [MnO4-] as an oxidant in different acidic environments, namely sulfuric and perchloric acids at various temperatures. Stoichiometry of the reactions between Flz and [MnO4-] in both acidic environments was attained to be 1.2 ± 0.07 mol. The kinetics of the degradation reactions in both cases were the same, being unit order regarding [MnO4-], fewer than unit orders in [Flz], and fractional second orders in acid concentrations. The rate of oxidative degradation of fluconazole in H2SO4 was higher than that in HClO4 at the same investigational circumstances. The addition of small amounts of Mg2+ and Zn2+ enhanced the degradation rates. The activation quantities were evaluated and debated. The gained oxidation products were characterized using spot tests. A mechanistic approach for the fluconazole degradation was suggested. Finally, the rate law expressions were derived which were agreed with the acquired outcomes. The rates of degradation for various [Flz] were mathematically modeled using the response surface methodology (RSM). The RSM model's conclusions and the experimental findings are in agreement. The oxidative degradation mechanism of Flz using density functional theory (DFT) was performed. The fluconazole drug degrades in acidic settings, protecting both the environment and human health, according to a method that is easy to use, powerful, inexpensive, practical, affordable, and safe.
Collapse
Affiliation(s)
- Arafat Toghan
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Ahmed Fawzy
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Nada Alqarni
- Department of Chemistry, College of Sciences and Arts in Balgarn, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed M Eldesoky
- Department of Chemistry, University College in Al-Qunfudhah, Umm Al-Qura University, Makkah 21912, Saudi Arabia
| | - Omar K Alduaij
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Ahmed A Farag
- Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt
| |
Collapse
|
5
|
Al-Senani GM, Mwafy EA, Al-Ahmadi AN, ElFaham MM, Almotairy ARZ, Elsharkawy W, Mostafa AM. Effect of laser pulse repetition rate in the laser ablation of nickel metal in PVA solution on the adsorption efficiency of NiO/PVA nanocomposite against phosphate ions. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
6
|
Alrebdi TA, Rezk RA, Alghamdi SM, Ahmed HA, Alkallas FH, Pashameah RA, Mostafa AM, Mwafy EA. Photocatalytic Performance Improvement by Doping Ag on ZnO/MWCNTs Nanocomposite Prepared with Pulsed Laser Ablation Method Based Photocatalysts Degrading Rhodamine B Organic Pollutant Dye. MEMBRANES 2022; 12:877. [PMID: 36135895 PMCID: PMC9505665 DOI: 10.3390/membranes12090877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
ZnO/MWCNTs nanocomposite has significant potential in photocatalytic and environmental treatment. Unfortunately, its photocatalytic efficacy is not high enough due to its poor light absorbance and quick recombination of photo-generated carriers, which might be improved by incorporation with noble metal nanoparticles. Herein, Ag-doped ZnO/MWCNTs nanocomposite was prepared using a pulsed laser ablation approach in the liquid media and examined as a degradable catalyst for Rhodamine B. (RhB). Different techniques were used to confirm the formation of the nanostructured materials (ZnO and Ag) and the complete interaction between them and MWCNTs. X-ray diffraction pattern revealed the hexagonal wurtzite crystal structure of ZnO and Ag. Additionally, UV-visible absorption spectrum was used to study the change throughout the shift in the transition energies, which affected the photocatalytic degradation. Furthermore, the morphological investigation by a scanning electron microscope showed the successful embedding and decoration of ZnO and Ag on the outer surface of CNTs. Moreover, the oxidation state of the formed final nanocomposite was investigated via an X-ray photoelectron spectrometer. After that, the photocatalytic degradations of RhB were tested using the prepared catalysts. The results showed that utilizing Ag significantly impacted the photo degradation of RhB by lowering the charge carrier recombination, leading to 95% photocatalytic degradation after 12 min. The enhanced photocatalytic performance of the produced nanocomposite was attributed to the role of the Ag dopant in generating more active oxygen species. Moreover, the impacts of the catalyst amount, pH level, and contact time were discussed.
Collapse
Affiliation(s)
- Tahani A. Alrebdi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Reham A. Rezk
- Higher Technological Institute, 10th of Ramadan City, 6th of October Branch, 3rd Zone, 7th Section, 6th of October City, 10th of Ramadan 44629, Egypt
| | - Shoug M. Alghamdi
- Department of Physics, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia
| | - Hoda A. Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
- Chemistry Department, College of Sciences, Taibah University, Yanbu 46423, Saudi Arabia
| | - Fatemah H. Alkallas
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Ayman M. Mostafa
- Spectroscopy Department, Physics Division, National Research Centre, 33 El Bohouth st. (Former El Tahrir st.), Dokki, Giza 12622, Egypt
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, 33 El Bohouth st. (Former El Tahrir st.), Dokki, Giza 12622, Egypt
| | - Eman A. Mwafy
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, 33 El Bohouth st. (Former El Tahrir st.), Dokki, Giza 12622, Egypt
- Physical Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
7
|
Ag/ZnO Thin Film Nanocomposite Membrane Prepared by Laser-Assisted Method for Catalytic Degradation of 4-Nitrophenol. MEMBRANES 2022; 12:membranes12080732. [PMID: 35893450 PMCID: PMC9331792 DOI: 10.3390/membranes12080732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
Zinc oxide thin film (ZnO thin film) and a silver-doped zinc oxide nanocomposite thin film (Ag/ZnO thin film) were prepared by the technique of the pulsed laser deposition at 600 °C to be applicable as a portable catalytic material for the removal of 4-nitrophenol. The nanocomposite was prepared by making the deposition of the two targets (Zn and Ag), and it was analyzed by different techniques. According to the XRD pattern, the hexagonal wurtzite crystalline form of Ag-doped ZnO NPs suggested that the samples were polycrystalline. Additionally, the shifting of the diffraction peaks to the higher angles, which denotes that doping reduces the crystallite size, illustrated the typical effect of the dopant Ag nanostructure on the ZnO thin film, which has an ionic radius less than the host cation. From SEM images, Ag-doping drastically altered the morphological characteristics and reduced the aggregation. Additionally, its energy band gap decreased when Ag was incorporated. UV spectroscopy was then used to monitor the catalysis process, and Ag/ZnO thin films had a larger first-order rate constant of the catalytic reaction K than that of ZnO thin film. According to the catalytic experiment results, the Ag/ZnO thin film has remarkable potential for use in environmentally-favorable applications.
Collapse
|
8
|
Alkallas FH, Ahmed HA, Alrebdi TA, Pashameah RA, Alrefaee SH, Alsubhe E, Trabelsi ABG, Mostafa AM, Mwafy EA. Removal of Ni(II) Ions by Poly(Vinyl Alcohol)/Al2O3 Nanocomposite Film via Laser Ablation in Liquid. MEMBRANES 2022; 12:membranes12070660. [PMID: 35877862 PMCID: PMC9324330 DOI: 10.3390/membranes12070660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023]
Abstract
Al2O3-poly(vinyl alcohol) nanocomposite (Al2O3-PVA nanocomposite) was generated in a single step using an eco-friendly method based on the pulsed laser ablation approach immersed in PVA solution to be applicable for the removal of Ni(II) from aqueous solution, followed by making a physicochemical characterization by SEM, XRD, FT-IR, and EDX. After that, the effect of adsorption parameters, such as pH, contact time, initial concentration of Ni(II), and medium temperature, were investigated for removal Ni(II) ions. The results showed that the adsorption was increased when pH was 5.3, and the process was initially relatively quick, with maximum adsorption detected within 90 min of contact time with the endothermic sorption process. Moreover, the pseudo-second-order rate kinetics (k2 = 9.9 × 10−4 g mg−1 min−1) exhibited greater agreement than that of the pseudo-first-order. For that, the Ni(II) was effectively collected by Al2O3-PVA nanocomposite prepared by an eco-friendly and simple method for the production of clean water to protect public health.
Collapse
Affiliation(s)
- Fatemah H. Alkallas
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (F.H.A.); (T.A.A.); (A.B.G.T.)
| | - Hoda A. Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt;
- Chemistry Department, College of Sciences, Taibah University, Yanbu 30799, Saudi Arabia;
| | - Tahani A. Alrebdi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (F.H.A.); (T.A.A.); (A.B.G.T.)
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia;
| | - Salhah H. Alrefaee
- Chemistry Department, College of Sciences, Taibah University, Yanbu 30799, Saudi Arabia;
| | - Emaan Alsubhe
- Physics Department, Faculty of Science, Taibah University, Yanbu 30799, Saudi Arabia;
| | - Amira Ben Gouider Trabelsi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (F.H.A.); (T.A.A.); (A.B.G.T.)
| | - Ayman M. Mostafa
- Spectroscopy Department, Physics Division Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir st.), Dokki, Giza 12622, Egypt
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, 33 El Bohouth st. (Former El Tahrir St.), Dokki, Giza 12622, Egypt;
- Correspondence:
| | - Eman A. Mwafy
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, 33 El Bohouth st. (Former El Tahrir St.), Dokki, Giza 12622, Egypt;
- Physical Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Giza 12622, Egypt
| |
Collapse
|