1
|
Shahid M, Singh BN, Verma S, Choudhary P, Das S, Chakdar H, Murugan K, Goswami SK, Saxena AK. Bioactive antifungal metabolites produced by Streptomyces amritsarensis V31 help to control diverse phytopathogenic fungi. Braz J Microbiol 2021; 52:1687-1699. [PMID: 34591293 PMCID: PMC8578481 DOI: 10.1007/s42770-021-00625-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022] Open
Abstract
Actinomycetes due to their unique repertoire of antimicrobial secondary metabolites can be an eco-friendly and sustainable alternative to agrochemicals to control plant pathogens. In the present study, antifungal activity of twenty different actinomycetes was evaluated via dual culture plate assay against six different phytopathogens, viz., Alternaria alternata, Aspergillus flavus, Fusarium oxysporum f. sp. lycopersici, Sarocladium oryzae, Sclerotinia sclerotiorum, and Rhizoctonia solani. Two potential isolates, Streptomyces amritsarensis V31 and Kribella karoonensis MSCA185 showing high antifungal activity against all six fungal pathogens, were further evaluated after extraction of bioactive metabolites in different solvents. Metabolite extracted from S. amritsarensis V31 in different solvents inhibited Rhizoctonia solani (7.5-65%), Alternaria alternata (5.5-52.7%), Aspergillus flavus (8-30.7%), Fusarium oxysporum f. sp. lycopersici (25-44%), Sarocladium oryzae (11-55.5%), and Sclerotinia sclerotiorum (29.7-40.5%); 1000 D diluted methanolic extract of S. amritsarensis V31 showed growth inhibition against R. solani (23.3%), A. flavus (7.7%), F. oxysporum (22.2%), S. oryzae (16.7%), and S. sclerotiorum (19.0%). Metabolite extracts of S. amritsarensis V31 significantly reduced the incidence of rice sheath blight both as preventive and curative sprays. Chemical profiling of the metabolites in DMSO extract of S. amritsarensis V31 revealed 6-amino-5-nitrosopyrimidine-2,4-diol as the predominant compound present. It was evident from the LC-MS analyses that S. amritsarensis V31 produced a mixture of potential antifungal compounds which inhibited the growth of different phytopathogenic fungi. The results of this study indicated that metabolite extracts of S. amritsarensis V31 can be exploited as a bio-fungicide to control phytopathogenic fungi.
Collapse
Affiliation(s)
- Mohammad Shahid
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| | - Bansh Narayan Singh
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| | - Shaloo Verma
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| | - Prassan Choudhary
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| | - Sudipta Das
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| | - Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India.
| | - Kumar Murugan
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| | - Sanjay Kumar Goswami
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
- ICAR-Indian Institute of Sugarcane Research (IISR), Uttar Pradesh, Lucknow, 226002, India
| | - Anil Kumar Saxena
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| |
Collapse
|
2
|
Reverchon F, García-Quiroz W, Guevara-Avendaño E, Solís-García IA, Ferrera-Rodríguez O, Lorea-Hernández F. Antifungal potential of Lauraceae rhizobacteria from a tropical montane cloud forest against Fusarium spp. Braz J Microbiol 2019; 50:583-592. [PMID: 31119710 PMCID: PMC6863318 DOI: 10.1007/s42770-019-00094-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/11/2019] [Indexed: 10/26/2022] Open
Abstract
The occurrence of pests and diseases can affect plant health and productivity in ecosystems that are already at risk, such as tropical montane cloud forests. The use of naturally occurring microorganisms is a promising alternative to mitigate forest tree fungal pathogens. The objectives of this study were to isolate rhizobacteria associated with five Lauraceae species from a Mexican tropical montane cloud forest and to evaluate their antifungal activity against Fusarium solani and F. oxysporum. Fifty-six rhizobacterial isolates were assessed for mycelial growth inhibition of Fusarium spp. through dual culture assays. Thirty-three isolates significantly reduced the growth of F. solani, while 21 isolates inhibited that of F. oxysporum. The nine bacterial isolates that inhibited fungal growth by more than 20% were identified through 16S rDNA gene sequence analysis; they belonged to the genera Streptomyces, Arthrobacter, Pseudomonas, and Staphylococcus. The volatile organic compounds (VOC) produced by these nine isolates were evaluated for antifungal activity. Six isolates (Streptomyces sp., Arthrobacter sp., Pseudomonas sp., and Staphylococcus spp.) successfully inhibited F. solani mycelial growth by up to 37% through VOC emission, while only the isolate INECOL-21 (Pseudomonas sp.) inhibited F. oxysporum. This work provides information on the microbiota of Mexican Lauraceae and is one of the few studies identifying forest tree-associated microbes with inhibitory activity against tree pathogens.
Collapse
Affiliation(s)
- Frédérique Reverchon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz, Mexico.
| | - Wilians García-Quiroz
- Universidad Interserrana del Estado de Puebla-Chilchotla, Rafael J. García Chilchotla, Puebla, Mexico
| | - Edgar Guevara-Avendaño
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz, Mexico
- Instituto de Agroindustrias, Universidad Tecnológica de la Mixteca, Huajuapan de León, Oaxaca, Mexico
| | - Itzel A Solís-García
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz, Mexico
| | - Ofelia Ferrera-Rodríguez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz, Mexico
| | | |
Collapse
|