1
|
Reyes-Cervantes A, Robles-Morales DL, Tec-Caamal EN, Jiménez-González A, Medina-Moreno SA. Performance evaluation of Trichoderma reseei in tolerance and biodegradation of diuron herbicide in agar plate, liquid culture and solid-state fermentation. World J Microbiol Biotechnol 2024; 40:137. [PMID: 38504029 DOI: 10.1007/s11274-024-03931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
The present study evaluated the performance of the fungus Trichoderma reesei to tolerate and biodegrade the herbicide diuron in its agrochemical presentation in agar plates, liquid culture, and solid-state fermentation. The tolerance of T. reesei to diuron was characterized through a non-competitive inhibition model of the fungal radial growth on the PDA agar plate and growth in liquid culture with glucose and ammonium nitrate, showing a higher tolerance to diuron on the PDA agar plate (inhibition constant 98.63 mg L-1) than in liquid culture (inhibition constant 39.4 mg L-1). Diuron biodegradation by T. reesei was characterized through model inhibition by the substrate on agar plate and liquid culture. In liquid culture, the fungus biotransformed diuron into 3,4-dichloroaniline using the amide group from the diuron structure as a carbon and nitrogen source, yielding 0.154 mg of biomass per mg of diuron. A mixture of barley straw and agrolite was used as the support and substrate for solid-state fermentation. The diuron removal percentage in solid-state fermentation was fitted by non-multiple linear regression to a parabolic surface response model and reached the higher removal (97.26%) with a specific aeration rate of 1.0 vkgm and inoculum of 2.6 × 108 spores g-1. The diuron removal in solid-state fermentation by sorption on barley straw and agrolite was discarded compared to the removal magnitude of the biosorption and biodegradation mechanisms of Trichoderma reesei. The findings in this work about the tolerance and capability of Trichoderma reesei to remove diuron in liquid and solid culture media demonstrate the potential of the fungus to be implemented in bioremediation technologies of herbicide-polluted sites.
Collapse
Affiliation(s)
- Alejandro Reyes-Cervantes
- Posgrado en Biotecnología, Ex-Hacienda de Santa Bárbara, Universidad Politécnica de Pachuca, Mpio., Carretera Pachuca Cd. Sahagún Km. 20, C.P. 43830, Zempoala, Hgo, Mexico
| | - Diana Laura Robles-Morales
- Posgrado en Biotecnología, Ex-Hacienda de Santa Bárbara, Universidad Politécnica de Pachuca, Mpio., Carretera Pachuca Cd. Sahagún Km. 20, C.P. 43830, Zempoala, Hgo, Mexico
| | - Edgar Noé Tec-Caamal
- Centre of Bioengineering, School of Engineering and Sciences, Tecnologico de Monterrey, Campus Querétaro, Av. Epigmenio González 500, 76130, Santiago de Querétaro, Querétaro, Mexico
| | - Angélica Jiménez-González
- Posgrado en Biotecnología, Ex-Hacienda de Santa Bárbara, Universidad Politécnica de Pachuca, Mpio., Carretera Pachuca Cd. Sahagún Km. 20, C.P. 43830, Zempoala, Hgo, Mexico
| | - Sergio Alejandro Medina-Moreno
- Posgrado en Biotecnología, Ex-Hacienda de Santa Bárbara, Universidad Politécnica de Pachuca, Mpio., Carretera Pachuca Cd. Sahagún Km. 20, C.P. 43830, Zempoala, Hgo, Mexico.
- Centre of Bioengineering, School of Engineering and Sciences, Tecnologico de Monterrey, Campus Querétaro, Av. Epigmenio González 500, 76130, Santiago de Querétaro, Querétaro, Mexico.
| |
Collapse
|
2
|
Hernández-Alomia F, Ballesteros I, Castillejo P. Bioremediation potential of glyphosate-degrading microorganisms in eutrophicated Ecuadorian water bodies. Saudi J Biol Sci 2022; 29:1550-1558. [PMID: 35280549 PMCID: PMC8913404 DOI: 10.1016/j.sjbs.2021.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022] Open
Abstract
Phosphonate compounds are the basis of many xenobiotic pollutants, such as Glyphosate (N-(phosphonomethyl-glycine). Only procaryotic microorganisms and the lower eukaryotes are capable of phosphonate biodegradation through C–P lyase pathways. Thus, the aim of this study was to determine the presence of C–P lyase genes in Ecuadorian freshwater systems as a first step towards assessing the presence of putative glyphosate degraders. To that end, two Nested PCR assays were designed to target the gene that codifies for the subunit J (phnJ), which breaks the C-P bond that is critical for glyphosate mineralization. The assays designed in this study led to the detection of phnJ genes in 7 out of 8 tested water bodies. The amplified fragments presented 85–100% sequence similarity with phnJ genes that belong to glyphosate-degrading microorganisms. Nine sequences were not reported previously in the GenBank. The presence of phosphonate degraders was confirmed by isolating three strains able to grow using glyphosate as a unique carbon source. According to the 16S sequence, these strains belong to the Pantoea, Pseudomonas, and Klebsiella genera. Performing a Nested PCR amplification of phnJ genes isolated from eutrophicated water bodies, prior to isolation, may be a cost-effective strategy for the bioprospection of new species and/or genes that might have new properties for biotech industries, laying the groundwork for additional research.
Collapse
Affiliation(s)
- Fernanda Hernández-Alomia
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito, Ecuador
| | - Isabel Ballesteros
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pablo Castillejo
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito, Ecuador
- Corresponding author.
| |
Collapse
|
3
|
Sahar N, Arif S, Iqbal S, Riaz S, Fatima T, Ara J, Banks J. Effects of drying surfaces and physical attributes on the development of Aflatoxins (AFs) in red chilies. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Najmus Sahar
- Pakistan Agriculture Research Council Food Quality & Safety Research Institute Southern‐zone Agricultural Research Centre Karachi Pakistan
| | - Saqib Arif
- Pakistan Agriculture Research Council Food Quality & Safety Research Institute Southern‐zone Agricultural Research Centre Karachi Pakistan
| | - Sajid Iqbal
- Jinnah Government Degree College Karachi Pakistan
| | - Sundas Riaz
- Pakistan Agriculture Research Council Food Quality & Safety Research Institute Southern‐zone Agricultural Research Centre Karachi Pakistan
| | - Tehseen Fatima
- Dow College of Biotechnology Dow University of Health Sciences Karachi Pakistan
| | - Jahn Ara
- Department of Food Science & Technology University of Karachi Karachi Pakistan
| | - John Banks
- Faculty of Science Liverpool John Moores University Liverpool UK
| |
Collapse
|
4
|
Castrejón-Godínez ML, Tovar-Sánchez E, Valencia-Cuevas L, Rosas-Ramírez ME, Rodríguez A, Mussali-Galante P. Glyphosate Pollution Treatment and Microbial Degradation Alternatives, a Review. Microorganisms 2021; 9:2322. [PMID: 34835448 PMCID: PMC8625783 DOI: 10.3390/microorganisms9112322] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Glyphosate is a broad-spectrum herbicide extensively used worldwide to eliminate weeds in agricultural areas. Since its market introduction in the 70's, the levels of glyphosate agricultural use have increased, mainly due to the introduction of glyphosate-resistant transgenic crops in the 90's. Glyphosate presence in the environment causes pollution, and recent findings have proposed that glyphosate exposure causes adverse effects in different organisms, including humans. In 2015, glyphosate was classified as a probable carcinogen chemical, and several other human health effects have been documented since. Environmental pollution and human health threats derived from glyphosate intensive use require the development of alternatives for its elimination and proper treatment. Bioremediation has been proposed as a suitable alternative for the treatment of glyphosate-related pollution, and several microorganisms have great potential for the biodegradation of this herbicide. The present review highlights the environmental and human health impacts related to glyphosate pollution, the proposed alternatives for its elimination through physicochemical and biological approaches, and recent studies related to glyphosate biodegradation by bacteria and fungi are also reviewed. Microbial remediation strategies have great potential for glyphosate elimination, however, additional studies are needed to characterize the mechanisms employed by the microorganisms to counteract the adverse effects generated by the glyphosate exposure.
Collapse
Affiliation(s)
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico; (E.T.-S.); (L.V.-C.)
| | - Leticia Valencia-Cuevas
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico; (E.T.-S.); (L.V.-C.)
| | | | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico;
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico;
| |
Collapse
|
5
|
Spinelli V, Ceci A, Dal Bosco C, Gentili A, Persiani AM. Glyphosate-Eating Fungi: Study on Fungal Saprotrophic Strains' Ability to Tolerate and Utilise Glyphosate as a Nutritional Source and on the Ability of Purpureocillium lilacinum to Degrade It. Microorganisms 2021; 9:2179. [PMID: 34835305 PMCID: PMC8623091 DOI: 10.3390/microorganisms9112179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Glyphosate is the most commonly used herbicide worldwide. Its improper use during recent decades has resulted in glyphosate contamination of soils and waters. Fungal bioremediation is an environmentally friendly, cost effective, and feasible solution to glyphosate contamination in soils. In this study, several saprotrophic fungi isolated from agricultural environments were screened for their ability to tolerate and utilise Roundup in different cultural conditions as a nutritional source. Purpureocillium lilacinum was further screened to evaluate the ability to break down and utilise glyphosate as a P source in a liquid medium. The dose-response effect for Roundup, and the difference in toxicity between pure glyphosate and Roundup were also studied. This study reports the ability of several strains to tolerate 1 mM and 10 mM Roundup and to utilise it as nutritional source. P. lilacinum was reported for the first time for its ability to degrade glyphosate to a considerable extent (80%) and to utilise it as a P source, without showing dose-dependent negative effects on growth. Pure glyphosate was found to be more toxic than Roundup for P. lilacinum. Our results showed that pure glyphosate toxicity can be only partially addressed by the pH decrease determined in the culture medium. In conclusion, our study emphasises the noteworthy potential of P. lilacinum in glyphosate degradation.
Collapse
Affiliation(s)
- Veronica Spinelli
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Andrea Ceci
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Chiara Dal Bosco
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.D.B.); (A.G.)
| | - Alessandra Gentili
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.D.B.); (A.G.)
| | - Anna Maria Persiani
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
6
|
Correa LO, Bezerra AFM, Honorato LRS, Cortez ACA, Souza JVB, Souza ES. Amazonian soil fungi are efficient degraders of glyphosate herbicide; novel isolates of Penicillium, Aspergillus, and Trichoderma. BRAZ J BIOL 2021; 83:e242830. [PMID: 34161455 DOI: 10.1590/1519-6984.242830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/05/2021] [Indexed: 11/22/2022] Open
Abstract
Pesticide residues that contaminate the environment circulate within the hydrological cycle can accumulate within the food chain and cause problems to both environmental and human health. Microbes, however, are well known for their metabolic versatility and the ability to degrade chemically stable substances, including recalcitrant xenobiotics. The current study focused on bio-prospecting within Amazonian rainforest soils to find novel strains fungi capable of efficiently degrading the agriculturally and environmentally ubiquitous herbicide, glyphosate. Of 50 fungal strains isolated (using culture media supplemented with glyphosate as the sole carbon-substrate), the majority were Penicillium strains (60%) and the others were Aspergillus and Trichoderma strains (26 and 8%, respectively). All 50 fungal isolates could use glyphosate as a phosphorous source. Eight of these isolates grew better on glyphosate-supplemented media than on regular Czapek Dox medium. LC-MS revealed that glyphosate degradation by Penicillium 4A21 resulted in sarcosine and aminomethylphosphonic acid.
Collapse
Affiliation(s)
- L O Correa
- Universidade do Estado do Amazonas - UEA, Escola Superior de Ciências da Saúde, Manaus, AM, Brasil
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Micologia, Manaus, AM, Brasil
| | - A F M Bezerra
- Universidade do Estado do Amazonas - UEA, Escola Superior de Ciências da Saúde, Manaus, AM, Brasil
| | - L R S Honorato
- Universidade do Estado do Amazonas - UEA, Escola Superior de Ciências da Saúde, Manaus, AM, Brasil
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Micologia, Manaus, AM, Brasil
| | - A C A Cortez
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Micologia, Manaus, AM, Brasil
| | - J V B Souza
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Micologia, Manaus, AM, Brasil
| | - E S Souza
- Universidade do Estado do Amazonas - UEA, Escola Superior de Ciências da Saúde, Manaus, AM, Brasil
- Universidade do Estado do Amazonas - UEA, Escola Superior de Tecnologia, Manaus, AM, Brasil
| |
Collapse
|
7
|
Singh S, Kumar V, Gill JPK, Datta S, Singh S, Dhaka V, Kapoor D, Wani AB, Dhanjal DS, Kumar M, Harikumar SL, Singh J. Herbicide Glyphosate: Toxicity and Microbial Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7519. [PMID: 33076575 PMCID: PMC7602795 DOI: 10.3390/ijerph17207519] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/17/2023]
Abstract
Glyphosate is a non-specific organophosphate pesticide, which finds widespread application in shielding crops against the weeds. Its high solubility in hydrophilic solvents, especially water and high mobility allows the rapid leaching of the glyphosate into the soil leading to contamination of groundwater and accumulation into the plant tissues, therefore intricating the elimination of the herbicides. Despite the widespread application, only a few percentages of the total applied glyphosate serve the actual purpose, dispensing the rest in the environment, thus resulting in reduced crop yields, low quality agricultural products, deteriorating soil fertility, contributing to water pollution, and consequently threatening human and animal life. This review gives an insight into the toxicological effects of the herbicide glyphosate and current approaches to track and identify trace amounts of this agrochemical along with its biodegradability and possible remediating strategies. Efforts have also been made to summarize the biodegradation mechanisms and catabolic enzymes involved in glyphosate metabolism.
Collapse
Affiliation(s)
- Simranjeet Singh
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.D.); (D.S.D.)
- Punjab Biotechnology Incubator (PBTI), Phase-V, S.A.S. Nagar, Punjab 160059, India
- Regional Advance Water Testing Laboratory, Department of Water Supply and Sanitation, Phase-II, S.A.S. Nagar 160054, India;
| | - Vijay Kumar
- Regional Ayurveda Research Institute for Drug Development, Gwalior 474009, India;
| | | | - Shivika Datta
- Department of Zoology, Doaba College Jalandhar, Jalandhar 144001, India;
| | - Satyender Singh
- Regional Advance Water Testing Laboratory, Department of Water Supply and Sanitation, Phase-II, S.A.S. Nagar 160054, India;
| | - Vaishali Dhaka
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.D.); (D.S.D.)
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Phagwara 144411, India;
| | - Abdul Basit Wani
- Department of Chemistry, Lovely Professional University, Phagwara 144411, India;
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.D.); (D.S.D.)
| | - Manoj Kumar
- Department of Life Sciences, Central University Jharkhand, Brambe, Ranchi 835205, India; (M.K.); (S.L.H.)
| | - S. L. Harikumar
- Department of Life Sciences, Central University Jharkhand, Brambe, Ranchi 835205, India; (M.K.); (S.L.H.)
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.D.); (D.S.D.)
| |
Collapse
|
8
|
Differences in metabolites production using the Biolog FF Microplate™ system with an emphasis on some organic acids of Aspergillus niger wild type strains. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00521-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Carranza CS, Aluffi ME, Benito N, Magnoli K, Barberis CL, Magnoli CE. Effect of in vitro glyphosate on Fusarium spp. growth and disease severity in maize. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5064-5072. [PMID: 30977147 DOI: 10.1002/jsfa.9749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Glyphosate (GP) is one of the main pesticides used for maize production. Fusarium sp. is a fungal genus with several phytopathogenic species and toxigenic features. In this study, the culturable soil mycota was evaluated using the surface-spray method. The effect of GP on the growth parameters (growth rate and lag phase) of Fusarium spp. was also tested on solid media conditioned with different water activities. Finally, the GP effect on disease severity caused by Fusarium sp. in maize seedlings was studied. RESULTS The results showed that Fusarium species are frequently isolated from GP-exposed soils. The GP concentrations tested had a significant effect on F. graminearum, F. verticillioides and F. oxysporum growth parameters on solid media. The pathogenicity tests showed that the disease severity of the maize seedlings significantly increased with increasing GP concentrations. CONCLUSIONS This study showed that Fusarium species are frequently isolated from pesticide-exposed soils and the GP concentrations tested had a significant effect both on growth parameters and disease severity in maize. This study provides an approach to the effect of GP on Fusarium sp. growth and pathogenicity that reinforces the importance of evaluating all the factors that could affect feed and food production. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cecilia Soledad Carranza
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Melisa Eglé Aluffi
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Nicolás Benito
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
- Fondo para la Investigación Científica y Tecnológica (FONCyT), Ciudad Autónoma de Buenos Aires, Argentina
| | - Karen Magnoli
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carla Lorena Barberis
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carina Elizabeth Magnoli
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|