1
|
Goswami SK, Singh D, Singh SP, Kumar R, Gujjar RS, Raj C, Singh S, Yadav P, Chakdar H, Choudhary P, Singh DP, Singh D, Viswanathan R. Dual Function of Chaetomium globosum CGSR13: Antifungal Agent Against Wilt Caused by Fusarium sacchari and Promoter of Sugarcane Growth. SUGAR TECH 2025; 27:506-516. [DOI: 10.1007/s12355-024-01522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
|
2
|
Goswami SK, Viswanathan R, Kumar R, Gujjar RS, Yadav P, Chakdar H, Choudhary P, Verma S. Endophyte Chaetomium globosum Strain CGSR13 Mediated Sugarcane Growth and Bio-control of Red Rot Caused by Colletotrichum falcatum in Sub-tropical India. JOURNAL OF CROP HEALTH 2024; 76:1433-1446. [DOI: 10.1007/s10343-024-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/11/2024] [Indexed: 01/11/2025]
|
3
|
Omar AM, Mohamed GA, Ibrahim SRM. Chaetomugilins and Chaetoviridins—Promising Natural Metabolites: Structures, Separation, Characterization, Biosynthesis, Bioactivities, Molecular Docking and Molecular Dynamics. J Fungi (Basel) 2022; 8:jof8020127. [PMID: 35205880 PMCID: PMC8875349 DOI: 10.3390/jof8020127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Fungi are recognized as luxuriant metabolic artists that generate propitious biometabolites. Historically, fungal metabolites have largely been investigated as leads for various therapeutic agents. Chaetomugilins and the closely related chaetoviridins are fungal metabolites, and each has an oxygenated bicyclic pyranoquinone core. They are mainly produced by various Chaetomaceae species. These metabolites display unique chemical features and diversified bioactivities. The current review gives an overview of research about fungal chaetomugilins and chaetoviridins regarding their structures, separation, characterization, biosynthesis, and bioactivities. Additionally, their antiviral potential towards the SARS-CoV-2 protease was evaluated using docking studies and molecular dynamics (MD) simulations. We report on the docking and predictive binding energy estimations using reported crystal structures of the main protease (PDB ID: 6M2N, 6W81, and 7K0f) at variable resolutions—i.e., 2.20, 1.55, and 1.65 Å, respectively. Chaetovirdin D (43) exhibited highly negative docking scores of −7.944, −8.141, and −6.615 kcal/mol, when complexed with 6M2N, 6W81, and 7K0f, respectively. The reference inhibitors exhibited the following scores: −5.377, −6.995, and −8.159 kcal/mol, when complexed with 6M2N, 6W81, and 7K0f, respectively. By using molecular dynamics simulations, chaetovirdin D’s stability in complexes with the viral protease was analyzed, and it was found to be stable over the course of 100 ns.
Collapse
Affiliation(s)
- Abdelsattar M. Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (A.M.O.); or (S.R.M.I.); Tel.: +966-56-768-1466 (A.M.O.); +966-58-118-3034 (S.R.M.I.)
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: (A.M.O.); or (S.R.M.I.); Tel.: +966-56-768-1466 (A.M.O.); +966-58-118-3034 (S.R.M.I.)
| |
Collapse
|
4
|
Barthélemy M, Elie N, Genta-Jouve G, Stien D, Touboul D, Eparvier V. Identification of Antagonistic Compounds between the Palm Tree Xylariale Endophytic Fungi and the Phytopathogen Fusarium oxysporum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10893-10906. [PMID: 34516124 DOI: 10.1021/acs.jafc.1c03141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To discover microorganisms that naturally possess chemical weapons against the phytopathogen Fusarium oxysporum, the biological and chemical diversity of plant leaf endophytes was investigated. Endophytes were isolated from the palm tree Astrocaryum sciophyllum collected in pristine forests of French Guiana. Several Xylariaceae inhibited the growth of F. oxysporum and were further explored. Antifungal specialized metabolites were isolated from the Xylariaceae BSNB-0294 strain in confrontation with the phytopathogen and led to the identification of undescribed compounds, i.e., two depsipeptides named xylariaceins, two metabolites containing a 3-imidazolinone moiety, and four new compounds including a nitro-phenylpropanamide and three phenylalanine analogues named xylariains A-D. In parallel, the chemical investigation of the phytopathogen during the coculture led to the identification of an unknown compound, which we named focicin. The production of focicin was exacerbated during the competition. Matrix-assisted laser desorption/ionization coupled to time-of-flight mass spectometry (MALDI-TOF MS) imaging of the competition between BSNB-0294 (endophytic strain) and F. oxysporum f.sp. ciceris (phytopathogen) highlighted time-dependent chemical interactions between the two microorganisms.
Collapse
Affiliation(s)
- Morgane Barthélemy
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Nicolas Elie
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Grégory Genta-Jouve
- Laboratoire Ecologie, Evolution, Interactions des Systèmes Amazoniens (LEEISA), USR 3456, Université De Guyane, CNRS Guyane, 97300 Cayenne, French Guiana, France
| | - Didier Stien
- Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Sorbonne Universités, UPMC Université Paris 06, CNRS, 66650 Banyuls-sur-Mer, France
| | - David Touboul
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Véronique Eparvier
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Fadiji AE, Babalola OO. Exploring the potentialities of beneficial endophytes for improved plant growth. Saudi J Biol Sci 2020; 27:3622-3633. [PMID: 33304173 PMCID: PMC7714962 DOI: 10.1016/j.sjbs.2020.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 11/23/2022] Open
Abstract
Pathogen affects plant growth, host health and productivity. Endophytes, presumed to live inside the plant tissues, might be helpful in sustaining the future of agriculture. Although recent studies have proven that endophytes can be pathogenic, commensal, non-pathogenic, and/or beneficial, this review will focus on the beneficial category only. Beneficial endophytes produce a number of compounds which are useful for protecting plants from environmental conditions, enhancing plant growth and sustainability, while living conveniently inside the hosts. The population of endophytes is majorly controlled by location, and climatic conditions where the host plant grows. Often the most frequently isolated endophytes from the tissues of the plant are fungi, but sometimes greater numbers of bacteria are isolated. Beneficial endophytes stand a chance to replace the synthetic chemicals currently being used for plant growth promotion if carefully explored by researchers and embraced by policymakers. However, the roles of endophytes in plant growth improvement and their behavior in the host plant have not been fully understood. This review presents the current development of research into beneficial endophytes and their effect in improving plant growth.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, Private Mail Bag X2046, North-West University, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, Private Mail Bag X2046, North-West University, South Africa
| |
Collapse
|