1
|
Pouladvand N, Azarnia M, Zeinali H, Fathi R, Tavana S. An overview of different methods to establish a murine premature ovarian failure model. Animal Model Exp Med 2024; 7:835-852. [PMID: 39219374 PMCID: PMC11680483 DOI: 10.1002/ame2.12477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
Premature ovarian failure (POF)is defined as the loss of normal ovarian function before the age of 40 and is characterized by increased gonadotropin levels and decreased estradiol levels and ovarian reserve, often leading to infertility. The incomplete understanding of the pathogenesis of POF is a major impediment to the development of effective treatments for this disease, so the use of animal models is a promising option for investigating and identifying the molecular mechanisms involved in POF patients and developing therapeutic agents. As mice and rats are the most commonly used models in animal research, this review article considers studies that used murine POF models. In this review based on the most recent studies, first, we introduce 10 different methods for inducing murine POF models, then we demonstrate the advantages and disadvantages of each one, and finally, we suggest the most practical method for inducing a POF model in these animals. This may help researchers find the method of creating a POF model that is most appropriate for their type of study and suits the purpose of their research.
Collapse
Affiliation(s)
- Negar Pouladvand
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Mahnaz Azarnia
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Hadis Zeinali
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| |
Collapse
|
2
|
Wu J, Feng S, Luo Y, Ning Y, Qiu P, Lin Y, Ma F, Zhuo Y. Transcriptomic profile of premature ovarian insufficiency with RNA-sequencing. Front Cell Dev Biol 2024; 12:1370772. [PMID: 38655066 PMCID: PMC11035783 DOI: 10.3389/fcell.2024.1370772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction This study aimed to explore the transcriptomic profile of premature ovarian insufficiency (POI) by investigating alterations in gene expression. Methods A total of sixty-one women, comprising 31 individuals with POI in the POI group and 30 healthy women in the control group (HC group), aged between 24 and 40 years, were recruited for this study. The transcriptomic profiles of peripheral blood samples from all study subjects were analyzed using RNA-sequencing. Results The results revealed 39 differentially expressed genes in individuals with POI compared to healthy controls, with 10 upregulated and 29 downregulated genes. Correlation analysis highlighted the relationship between the expression of SLC25A39, CNIH3, and PDZK1IP1 and hormone levels. Additionally, an effective classification model was developed using SLC25A39, CNIH3, PDZK1IP1, SHISA4, and LOC389834. Functional enrichment analysis demonstrated the involvement of these differentially expressed genes in the "haptoglobin-hemoglobin complex," while KEGG pathway analysis indicated their participation in the "Proteoglycans in cancer" pathway. Conclusion The identified genes could play a crucial role in characterizing the genetic foundation of POI, potentially serving as valuable biomarkers for enhancing disease classification accuracy.
Collapse
Affiliation(s)
- Jiaman Wu
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiyu Feng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Luo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Ning
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pingping Qiu
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Yanting Lin
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Fei Ma
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan Zhuo
- Department of Acupuncture and Moxibustion, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
3
|
Qin Y, Wen C, Wu H. CXCL10-based gene cluster model serves as a potential diagnostic biomarker for premature ovarian failure. PeerJ 2023; 11:e16659. [PMID: 38107572 PMCID: PMC10725173 DOI: 10.7717/peerj.16659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Objective Premature ovarian failure (POF) is a disease with high clinical heterogeneity. Subsequently, its diagnosis is challenging. CXCL10 which is a small signaling protein involved in immune response and inflammation may have diagnostic potential in detection of premature ovarian insufficiency. Therefore, this study aimed to investigate CXCL10 based diagnostic biomarkers for POF. Methods Transcriptome data for POF was obtained from the Gene Expression Omnibus (GEO) database (GSE39501). Principal component analysis (PCA) assessed CXCL10 expression in patients with POF. The receiver operating characteristic (ROC) curve, analyzed using PlotROC, demonstrated the diagnostic potential of CXCL10 and CXCL10-based models for POF. Differentially expressed genes (DEGs) in the control group of POF were identified using DEbylimma. PlotVenn was used to determine the overlap between the POF-control group and the high-/low-expression CXCL10 groups. QuadrantPlot was employed to detect CXCL10-dysregulated genes in POF. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were conducted on DEGs using RunMulti Group cluster Profiler. A POF model was induced with cisplatin (DDP) using KGN cells. RT-qPCR and Western blot were used to measure the expression of CXCL10, apoptosis-related proteins, and peroxisome proliferator-activated receptor (PPAR) signaling pathway-related proteins in this model, following siRNA-mediated silencing of CXCL10. Flow cytometry was employed to assess the apoptosis of KGN cells after CXCL10 downregulation. Results The expression of CXCL10 is dysregulated in POF, and it shows promising diagnostic potential for POF, as evidenced by an area under the curve value of 1. In POF, we found 3,362 up-regulated and 3,969 down-regulated DEGs compared to healthy controls, while the high- and low-expression groups of POF (comprising samples above and below the median CXCL10 expression) exhibited 1,304 up-regulated and 1,315 down-regulated DEGs. Among these, 786 DEGs consistently displayed dysregulation in POF due to CXCL10 influence. Enrichment analysis indicated that the PPAR signaling pathway was activated by CXCL10 in POF. The CXCL10-based model (including CXCL10, Itga2, and Raf1) holds potential as a diagnostic biomarker for POF. Additionally, in the DDP-induced KGN cell model, interfering with CXCL10 expression promoted the secretion of estradiol, and reduced apoptosis. Furthermore, CXCL10 silencing led to decreased expression levels of PPARβ and long-chain acyl-CoA synthetase 1 compared to the Si-NC group. These results suggest that CXCL10 influences the progression of POF through the PPAR signaling pathway. Conclusion The CXCL10-based model, demonstrating perfect diagnostic accuracy for POF and comprising CXCL10, Itga2, and Raf1, holds potential as a valuable diagnostic biomarker. Thus, the expression levels of these genes may collectively provide valuable diagnostic information for POF.
Collapse
Affiliation(s)
- Ying Qin
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
- Reproductive Medicine Center, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Canliang Wen
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Huijiao Wu
- Reproductive Medicine Center, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| |
Collapse
|
4
|
Shelling AN, Ahmed Nasef N. The Role of Lifestyle and Dietary Factors in the Development of Premature Ovarian Insufficiency. Antioxidants (Basel) 2023; 12:1601. [PMID: 37627595 PMCID: PMC10451748 DOI: 10.3390/antiox12081601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a condition that arises from dysfunction or early depletion of the ovarian follicle pool accompanied by an earlier-than-normal loss of fertility in young women. Oxidative stress has been suggested as an important factor in the decline of fertility in women and POI. In this review, we discuss the mechanisms of oxidative stress implicated in ovarian ageing and dysfunction in relation to POI, in particular mitochondrial dysfunction, apoptosis and inflammation. Genetic defects, autoimmunity and chemotherapy, are some of the reviewed hallmarks of POI that can lead to increased oxidative stress. Additionally, we highlight lifestyle factors, including diet, low energy availability and BMI, that can increase the risk of POI. The final section of this review discusses dietary factors associated with POI, including consumption of oily fish, mitochondria nutrient therapy, melatonin, dairy and vitamins that can be targeted as potential interventions, especially for at-risk women and in combination with personalised nutrition. Understanding the impact of lifestyle and its implications for POI and oxidative stress holds great promise in reducing the burden of this condition.
Collapse
Affiliation(s)
- Andrew N. Shelling
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand;
- Centre for Cancer Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Noha Ahmed Nasef
- Riddet Research Institute, Massey University, Palmerston North 4474, New Zealand
- School of Food and Advanced Technology, College of Science, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
5
|
Lingamgunta LK, Aloor BP, Dasari S, Ramakrishnan R, Botlagunta M, Madikonda AK, Gopal S, Sade A. Identification of prognostic hub genes and therapeutic targets for selenium deficiency in chicks model through transcriptome profiling. Sci Rep 2023; 13:8695. [PMID: 37248251 DOI: 10.1038/s41598-023-34955-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Selenium deficiency is a prevalent micronutrient deficiency that poses a major health concern worldwide. This study aimed to shed light on the molecular mechanisms underlying selenium deficiency using a chick model. Chickens were divided into control and selenium deficient groups. Plasma samples were collected to measure selenium concentration and transcriptome analyse were performed on oviduct samples. The results showed that selenium deficiency led to a significant reduction in plasma selenium levels and altered the expression of 10,266 differentially expressed genes (DEGs). These DEGs primarily regulated signal transduction and cell motility. The molecular function includes GTPase regulatory activity, and KEGG pathway analysis showed that they were mainly involved in the signal transduction. By using Cytoscape and CancerGeneNet tool, we identified 8 modules and 10 hub genes (FRK, JUN, PTPRC, ACTA2, MST1R, SDC4, SDC1, CXCL12, MX1 and EZR) associated with receptor tyrosine kinase pathway, Wnt and mTOR signaling pathways that may be closely related to cancer. These hub genes could be served as precise diagnostic and prognostic candidate biomarkers of selenium deficiency and potential targets for treatment strategies in both animals and humans. This study sheds light on the molecular basis of selenium deficiency and its potential impact on public health.
Collapse
Affiliation(s)
| | - Bindu Prasuna Aloor
- Department of Botany, Rayalaseema University, Kurnool, 518002, Andhra Pradesh, India
| | - Sreenivasulu Dasari
- Department of Biochemistry, Sri Venkateswara University, Tirupati, 517502, Andhra Pradesh, India
| | - Ranjani Ramakrishnan
- Department of Virology, Sri Venkateswara University, Tirupati, 517502, Andhra Pradesh, India
| | - Mahendran Botlagunta
- School of Biosciences, Engineering and Technology, Vellore Institute of Technology (VIT), Bhopal, 466114, Madhya Pradesh, India
| | - Ashok Kumar Madikonda
- Department of Biochemistry & Molecular Biology, Central University of Kerala, Periye, 671316, Kerala, India
| | - Shankar Gopal
- Department of Biochemistry, Sri Venkateswara University, Tirupati, 517502, Andhra Pradesh, India
| | - Ankanna Sade
- Department of Botany, Sri Venkateswara University, Tirupati, 517502, Andhra Pradesh, India
| |
Collapse
|
6
|
Besson MDR, Taiarol MDS, Fernandes EB, Ghiorzi IB, Nunes MR, Zen PRG, Rosa RFM. Chromosomal abnormalities detected by karyotyping among patients with secondary amenorrhea: a retrospective study. SAO PAULO MED J 2023; 141:e2022426. [PMID: 37042862 PMCID: PMC10085534 DOI: 10.1590/1516-3180.2022.0426.r1.14012023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/14/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Chromosomal abnormalities (CAs) have been described in patients with secondary amenorrhea (SA). However, studies on this association are scarce. OBJECTIVES To evaluate the frequency and types of CAs detected by karyotyping in patients with SA. DESIGN AND SETTING This retrospective study was performed in a reference clinical genetic service in South Brazil. METHODS Data were obtained from the medical records of patients with SA who were evaluated between 1975 and 2022. Fisher's bicaudate exact test and Student's t-test were used, and P < 0.05 was considered significant. RESULTS Among 43 patients with SA, 14 (32.6%) had CAs, namely del (Xq) (n = 3), 45,X (n = 2), 46,X,r(X)/45,X (n = 2), 46,XX/45,X (n = 1), 46,X,i(q10)/45,X (n = 1), 47,XXX (n = 1), 46,XX/47,XXX (n = 1), 46,XX/47,XX,+mar (n = 1), 45,XX,trob(13;14)(q10;q10)/46,XXX,trob(13;14)(q10;q10) (n = 1), and 46,XX,t(2;21)(q23;q11.2) (n = 1). Additional findings were observed mostly among patients with CA compared with those without CA (P = 0.0021). No difference in the mean age was observed between the patients with SA with or without CAs (P = 0.268025). CONCLUSIONS CAs are common among patients with SA, especially those with short stature and additional findings. They are predominantly structural, involve the X chromosome in a mosaic, and are compatible with the Turner syndrome. Patients with SA, even if isolated, may have CAs, particularly del (Xq) and triple X.
Collapse
Affiliation(s)
- Marina da Rocha Besson
- BSc. Master´s Student, Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre (RS), Brazil
| | - Mateus Dos Santos Taiarol
- Undergraduate Student, Department of Clinical Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre (RS), Brazil
| | - Eliaquim Beck Fernandes
- Undergraduate Student, Department of Clinical Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre (RS), Brazil
| | - Isadora Bueloni Ghiorzi
- Undergraduate Student, Department of Clinical Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre (RS), Brazil
| | - Maurício Rouvel Nunes
- BSc. Doctoral Student, Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre (RS), Brazil
| | - Paulo Ricardo Gazzola Zen
- PhD. Professor, Departments of Clinical Medicine and Clinical Genetics, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre (RS), Brazil
| | - Rafael Fabiano Machado Rosa
- PhD. Professor, Departments of Clinical Medicine and Clinical Genetics, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre (RS), Brazil
| |
Collapse
|
7
|
Ovarian Reserve Disorders, Can We Prevent Them? A Review. Int J Mol Sci 2022; 23:ijms232315426. [PMID: 36499748 PMCID: PMC9737352 DOI: 10.3390/ijms232315426] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The ovarian reserve is finite and begins declining from its peak at mid-gestation until only residual follicles remain as women approach menopause. Reduced ovarian reserve, or its extreme form, premature ovarian insufficiency, stems from multiple factors, including developmental, genetic, environmental exposures, autoimmune disease, or medical/surgical treatment. In many cases, the cause remains unknown and resulting infertility is not ultimately addressed by assisted reproductive technologies. Deciphering the mechanisms that underlie disorders of ovarian reserve could improve the outcomes for patients struggling with infertility, but these disorders are diverse and can be categorized in multiple ways. In this review, we will explore the topic from a perspective that emphasizes the prevention or mitigation of ovarian damage. The most desirable mode of fertoprotection is primary prevention (intervening before ablative influence occurs), as identifying toxic influences and deciphering the mechanisms by which they exert their effect can reduce or eliminate exposure and damage. Secondary prevention in the form of screening is not recommended broadly. Nevertheless, in some instances where a known genetic background exists in discrete families, screening is advised. As part of prenatal care, screening panels include some genetic diseases that can lead to infertility or subfertility. In these patients, early diagnosis could enable fertility preservation or changes in family-building plans. Finally, Tertiary Prevention (managing disease post-diagnosis) is critical. Reduced ovarian reserve has a major influence on physiology beyond fertility, including delayed/absent puberty or premature menopause. In these instances, proper diagnosis and medical therapy can reduce adverse effects. Here, we elaborate on these modes of prevention as well as proposed mechanisms that underlie ovarian reserve disorders.
Collapse
|
8
|
Zhang Y, Han D, Yu X, Shao X, Zong C, Zhang M, Wang J, Liang J, Ge P. MiRNA-190a-5p promotes primordial follicle hyperactivation by targeting PHLPP1 in premature ovarian failure. Front Genet 2022; 13:1034832. [PMID: 36406123 PMCID: PMC9669437 DOI: 10.3389/fgene.2022.1034832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 12/11/2023] Open
Abstract
We previously screened 6 differentially expressed miRNAs in ovarian tissues of 4-vinylcyclohexene diepoxide (VCD)-treated premature ovarian failure (POF) model in SD rats, including miRNA-190a-5p, miRNA-98-5p, miRNA-29a-3p, miRNA-144-5p, miRNA-27b-3p, miRNA-151-5p. In this study, to investigate the mechanisms causing the onset of POF, we first identified miRNAs with earlier differential expression at consecutive time points in the VCD-treated rat POF model and explored the mechanisms by which the target miRNAs promote POF. The SD rats were injected with VCD for 15 days to induce POF. Additionally, we collected rat blood and ovaries at the same time every day for 15 consecutive days, and luteinizing hormone (LH), follicle-stimulating hormone (FSH), Anti-Mullerian hormone (AMH), and estradiol (E2) serum levels were detected by ELISA. Six miRNAs expression were measured in rat ovaries by qRT-PCR. Dual-luciferase reporter gene assays were employed to predict and verify the target gene (PHLPP1) of target miRNAs (miRNA-190a-5p). Western blot was examined to detect the expression levels of PHLPP1, AKT, p-AKT, FOXO3a, p-FOXO3a, and LHR proteins on the target gene PHLPP1 and its participation in the primordial follicular hyperactivation-related pathways (AKT-FOXO3a and AKT-LH/LHR). During the VCD modeling POF rat ovaries, miRNA-190a-5p was the first to show significant differential expression, i.e., 6th of VCD treating, and PHLPP1 was verified to be a direct downstream target of it. Starting from the 6th of VCD treatment, the more significant the up-regulation trend of miRNA-190a-5p expression, the more obvious the down-regulation trend of PHLPP1 and LHR mRNA and protein expression, accompanied by the more severe phosphorylation of AKT and FOXO3a proteins, thus continuously over-activating the rat primordial follicle to promote the development of POF. In conclusion, miRNA-190a-5p may become a potential biomarker for early screening of POF, and it can continuously activate primordial follicles in rats by targeting the expression of PHLPP1 and key proteins in the AKT-FOXO3a and AKT-LH/LHR pathways.
Collapse
Affiliation(s)
- Yuchi Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Dongwei Han
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyan Yu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyu Shao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Chuju Zong
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
- Heilongjiang Institute for Drug Control, Harbin, China
| | - Manyu Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Junzhi Wang
- Department of Dermatology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jingwen Liang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Pengling Ge
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
Kuang X, Tang Y, Xu H, Ji M, Lai D. The Evaluation of Ovarian Function Recovery Following Treatment of Primary Ovarian Insufficiency: A Systematic Review. Front Endocrinol (Lausanne) 2022; 13:855992. [PMID: 35573993 PMCID: PMC9095968 DOI: 10.3389/fendo.2022.855992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Primary ovarian insufficiency (POI) is gaining awareness as its prevalence increases and its effect on patients is extremely negative. To date, several therapies have been designed to treat POI, but the conclusions are conflicting, in part, due to inconsistent evaluation methods. Thus, we explore a multi-index of ovarian function assessment methods to evaluate the recovery of ovarian function after various therapies in order to evaluate effectiveness in a more comprehensive manner. AIM The purpose of this review is to assess the effectiveness of various therapies to recover ovarian function in patients with POI. The primary outcome measures were anti-Müllerian hormone (AMH) levels, follicle stimulating hormone (FSH) levels, and antral follicle count (AFC). The secondary outcomes included the change of mean ovarian volume, menstruation recovery, and pregnancy rate. METHODS Our systematic searching including PubMed, Web of Science, Cochrane, and Embase databases was conducted to find all human clinical trial articles published from January 2000 to April 2021 and related to POI treatment, including the keywords: POI, AFC, and hormones. All prospective and retrospective studies exploring ovarian function recovery that include AFC, AMH levels, and FSH levels evolution throughout treatment were included. All patients included in the studies met the POI criteria described by the European Society for Human Reproductive Embryology (ESHRE) guideline. RESULTS Six studies were selected based on the criteria: one randomized controlled trial and five observational studies. Among them, two studies focused on the intraovarian platelet-rich plasma (PRP) infusion treatment, two studies focused on dehydroepiandrosterone (DHEA) supplements, one study focused on hormone replacement therapy (HRT), and one study focused on autologous adipose-derived stromal cells (ADSCs) treatment. There was insufficient scientific evidence that any approach could help ovarian function recovery in patients with POI because the ovarian function markers in each study had inconsistent changes with 26 patients (6.2%) reporting spontaneous pregnancy. CONCLUSION Serum AMH levels, FSH levels, and AFC are sensitive indicators and reflect the evolution of ovarian function. Large randomized controlled trials are necessary, and the data on ovarian function should be collected comprehensively to evaluate the effectiveness of a variety of treatments.
Collapse
Affiliation(s)
- Xiaojun Kuang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yongzhe Tang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Hong Xu
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Min Ji
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- *Correspondence: Min Ji, ; Dongmei Lai,
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- *Correspondence: Min Ji, ; Dongmei Lai,
| |
Collapse
|
10
|
Faiza H, Khan M, Rafiq M, Khan AA, Rind NA, Naqvi SHA. Two novel mutations in exon 2 of bone morphogenetic protein (BMP) 15 gene in Pakistani infertile females. Saudi J Biol Sci 2021; 28:5364-5370. [PMID: 34466116 PMCID: PMC8381042 DOI: 10.1016/j.sjbs.2021.05.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/01/2022] Open
Abstract
Objective To determine the proportion of fertility in Pakistani infertile females and discover if there are considerable connection among BMP15 gene polymorphism, follicle maturation and hormonal regulation in Pakistani infertile females. Methods All selected participants were initially examined through follicle-stimulating hormones (FSH), luteinizing hormone (LH), thyroid-stimulating hormone (TSH), Prolactin, and Trans-vaginal scan (TVS). BMP15 gene polymorphism among infertile and fertile females was done by extracted Genomic DNA from whole blood. Sanger sequencing was performed for the identification of mutation in exons-intron boundaries of the BMP15 gene. Bioinformatics tools were used to assess the protein structure. Results The total five mutations including two novel missense variants of BMP15 in exon 2, whereas three previously reported i.e. two cosmic mutations (c.615delC), (c.584InsG) and one frame shift mutations (c.635delA) were also observed. The first novel mutation was found at (c.1038InsGG) (p.346Gln < Gly) in which the insertion of GG at DNA position 1038 of exon 2 resulting in a substitution of glutamine into glycine at 346th amino acid of BMP15 protein. The second novel variant (c.1049delT) (p. Ser334Pro) was also observed in exon 2 of the BMP15 gene, which substituted serine into proline at 334th amino acid of the BMP15 protein. Conclusion It is concluded that there are various missense mutations present in exon 2 of the BMP15 gene of Pakistani infertile females, consequently expected function of protein changes due to change in codons of amino acids. Provean and SIFT suggest the two novel variants as potentially deleterious. Although three other variants were also found in Pakistani infertile females which were previously reported. These mutations may result in early blockage of folliculogenesis and ovaries become streaky. Further research is required to resolve the actual allusion of these variations in the BMP15 gene.
Collapse
Affiliation(s)
- Hafiza Faiza
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro, Pakistan
| | - Majida Khan
- Department of Gynecology, Liaquat University of Medical Science, Jamshoro, Pakistan
| | - Muhammad Rafiq
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro, Pakistan
| | - Anoshiya Ali Khan
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro, Pakistan
| | - Nadir Ali Rind
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro, Pakistan.,Department of Genetics & Molecular Biology, SBBU, Shaheed Benazirabad, Pakistan
| | - Syed Habib Ahmed Naqvi
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro, Pakistan
| |
Collapse
|
11
|
Abstract
Approximately 50% of the causes of infertility are of genetic origin. The objective of this study was to analyze the role of genetics in human reproduction by reviewing the main genetic causes of infertility and the use of preimplantation genetic testing in Brazil. This literature review comprised articles in English and Portuguese published on databases PubMed, Scielo, and Bireme from 1990 to 2019. Randomized clinical trials and specialized guidelines were given preference whenever possible. Genetic cause can be traced back to up to 20% of the cases of severe azoospermia or oligozoospermia. Subjects with these conditions are good candidates for genetic screening. In women, genetic causes of infertility (fragile X syndrome, X-trisomy, and Turner's syndrome, some of which diagnosed with karyotyping) culminate with premature ovarian failure. Genetic screening helps advise couples of the risk of experiencing early reproductive capacity loss and of the chances of their offspring carrying genetic disorders. In addition to enhancing the prevention of serious diseases in the offspring of couples at increased risk of genetic diseases, preimplantation genetic screening improves the success rates of assisted reproduction procedures by allowing the selection of euploid embryos for transfer. The interface between genetics and human reproduction has gained significant relevance, but discussions are still needed on which procedures are clinically and ethically acceptable and how they should be regulated.
Collapse
Affiliation(s)
| | - Fernanda Polisseni
- Surgery Department, Medical School - Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | | |
Collapse
|
12
|
Wang X, Zhang X, Dang Y, Li D, Lu G, Chan WY, Leung PCK, Zhao S, Qin Y, Chen ZJ. Long noncoding RNA HCP5 participates in premature ovarian insufficiency by transcriptionally regulating MSH5 and DNA damage repair via YB1. Nucleic Acids Res 2020; 48:4480-4491. [PMID: 32112110 PMCID: PMC7192606 DOI: 10.1093/nar/gkaa127] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
The genetic etiology of premature ovarian insufficiency (POI) has been well established to date, however, the role of long noncoding RNAs (lncRNAs) in POI is largely unknown. In this study, we identified a down-expressed lncRNA HCP5 in granulosa cells (GCs) from biochemical POI (bPOI) patients, which impaired DNA damage repair and promoted apoptosis of GCs. Mechanistically, we discovered that HCP5 stabilized the interaction between YB1 and its partner ILF2, which could mediate YB1 transferring into the nucleus of GCs. HCP5 silencing affected the localization of YB1 into nucleus and reduced the binding of YB1 to the promoter of MSH5 gene, thereby diminishing MSH5 expression. Taken together, we identified that the decreased expression of HCP5 in bPOI contributed to dysfunctional GCs by regulating MSH5 transcription and DNA damage repair via the interaction with YB1, providing a novel epigenetic mechanism for POI pathogenesis.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong 250012, China
| | - Xinyue Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong 250012, China
| | - Yujie Dang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong 250012, China
| | - Duan Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong 250012, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Shidou Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong 250012, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong 250012, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong 250012, China.,Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai 200127, China.,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
13
|
Association between polymorphism in BMP15 and GDF9 genes and impairing female fecundity in diabetes type 2. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2020. [DOI: 10.1186/s43043-020-00032-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
A shortened reproductive period and earlier menopause have been associated with type 2 diabetes. Growth differentiation factor 9(GDF9) and bone morphogenetic protein 15 (BMP15) gene mutations have been associated with earlier menopause. Therefore, this study aimed to evaluate the association between BMP15 and GDF9 mutations with impairing female fecundity in diabetic patients. The study subjects comprised 90 female diabetic patients and 60 female healthy controls. The physio-biochemical analysis was measured using enzymatic determination. A single-strand conformation polymorphism (SSCP) protocol was utilized to assess the pattern of genetic variations.
Results
Genotyping analysis of the BMP15 gene showed a heterogeneous pattern with the presence of two genotypes: AA and AC genotypes. Five novel missense single nucleotide polymorphisms (SNPs) were identified in the BMP15 gene: four SNPs detected in both genotypes, and Met4Leu, a specific SNP, was detected only in the AC genotype. Cumulative in silico tools indicated a highly deleterious effect for the Met4Leu on the mutant protein structure, function, and stability. Diabetes patients showed a significantly higher frequency of genotype AC. The physio-biochemical analysis of fasting plasma glucose (FBG), glycosylated hemoglobin (HbA1c), and luteinizing hormone (LH) were significantly higher (P < 0.05) in AC genotype than AA genotype.
Conclusions
The current research provides the first indication regarding the tight association of BMP15 polymorphism with the impairing female fecundity in the diabetic. A pivotal role is played by the novel (Met4Leu) SNP that can be used as a predictor for the impairing female fecundity of diabetes, while no polymorphism was found in exon 4 of the GDF9 gene.
Collapse
|
14
|
Gonadal development and sex determination in mouse. Reprod Biol 2020; 20:115-126. [DOI: 10.1016/j.repbio.2020.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 12/18/2022]
|
15
|
Rapani A, Nikiforaki D, Karagkouni D, Sfakianoudis K, Tsioulou P, Grigoriadis S, Maziotis E, Pantou A, Voutsina A, Pantou A, Koutsilieris M, Hatzigeorgiou A, Pantos K, Simopoulou M. Reporting on the Role of miRNAs and Affected Pathways on the Molecular Backbone of Ovarian Insufficiency: A Systematic Review and Critical Analysis Mapping of Future Research. Front Cell Dev Biol 2020; 8:590106. [PMID: 33511114 PMCID: PMC7835544 DOI: 10.3389/fcell.2020.590106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Ovarian insufficiency is identified as a perplexing entity in the long list of pathologies impairing fertility dynamics. The three distinct classifications of ovarian insufficiency are poor ovarian response, premature ovarian insufficiency/failure, and advanced maternal age, sharing the common denominator of deteriorated ovarian reserve. Despite efforts to define clear lines among the three, the vast heterogeneity and overlap of clinical characteristics renders their diagnosis and management challenging. Lack of a consensus has prompted an empirically based management coupled by uncertainty from the clinicians' perspective. Profiling of patients in the era of precision medicine seems to be the way forward, while the necessity for a novel approach is underlined. Implicating miRNAs in the quest for patient profiling is promising in light of their fundamental role in cellular and gene expression regulation. To this end, the current study sets out to explore and compare the three pathophysiologies-from a molecular point of view-in order to enable profiling of patients in the context of in vitro fertilization treatment and enrich the data required to practice individualized medicine. Following a systematic investigation of literature, data referring to miRNAs were collected for each patient category based on five included studies. miRNA-target pairs were retrieved from the DIANA-TarBase repository and microT-CDS. Gene and miRNA annotations were derived from Ensembl and miRbase. A subsequent gene-set enrichment analysis of miRNA targets was performed for each category separately. A literature review on the most crucial of the detected pathways was performed to reveal their relevance to fertility deterioration. Results supported that all three pathophysiologies share a common ground regarding the affected pathways, naturally attributed to the common denominator of ovarian insufficiency. As evidenced, miRNAs could be employed to explore the fine lines and diverse nature of pathophysiology since they constitute invaluable biomarkers. Interestingly, it is the differentiation through miRNAs and not through the molecular affected pathways that corresponds to the three distinctive categories. Alarming discrepancies among publications were revealed, pertaining to employment of empirical and arbitrary criteria in categorizing the patients. Following bioinformatic analysis, the final step of the current study consisted of a critical analysis of the molecular data sourced, providing a clear and unique insight into the physiological mechanisms involved. It is our intention to contribute to mapping future research dedicated to ovarian insufficiency and to help researchers navigate the overwhelming information published in molecular studies.
Collapse
Affiliation(s)
- Anna Rapani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Nikiforaki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Karagkouni
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | | | - Petroula Tsioulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sokratis Grigoriadis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Maziotis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Amelia Pantou
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | | | - Agni Pantou
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Artemis Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | | | - Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Mara Simopoulou,
| |
Collapse
|
16
|
Jo HC, Park JK, Baek JC, Park JE, Kang MY, Cho IA. Clinicopathological features of premature ovarian insufficiency associated with chromosome abnormalities. ACTA ACUST UNITED AC 2019. [DOI: 10.5734/jgm.2019.16.1.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hyen Chul Jo
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, Korea
| | - Ji Kwon Park
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, Korea
| | - Jong Chul Baek
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, Korea
| | - Ji Eun Park
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, Korea
| | - Min Young Kang
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, Korea
| | - In Ae Cho
- Department of Obstetrics and Gynecology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Korea
| |
Collapse
|
17
|
Effects of pregnancy experience on ovarian senescence and longevity in Hatano rats bred for high- and low-avoidance learning. Exp Gerontol 2018; 117:91-98. [PMID: 30553773 DOI: 10.1016/j.exger.2018.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 10/09/2018] [Accepted: 11/22/2018] [Indexed: 11/20/2022]
Abstract
We investigated the effects of pregnancy experience on ovarian senescence and longevity using two inbred strains of Hatano rats. These strains have been selectively bred for high- and low-avoidance animals (HAA and LAA, respectively), but the HAA line has a slower onset of ovarian senescence and a shorter lifespan compared with the LAA line. The onset of abnormal estrous cycles and survival curves were compared between nulliparous and parous rats in each line. In the HAA line, pregnancy experience did not change the onset of ovarian senescence but increased longevity. This suggests that a pituitary tumor, which is a causal factor for accelerated mortality in this line, developed slowly in parous rats. In the LAA line, pregnancy experience delayed the onset of ovarian senescence and reduced the incidence of mammary tumors but did not increase longevity because of an increased frequency of constipation with megacolon. These data suggest that the effects of pregnancy experience on ovarian senescence and longevity depend on the reproductive characteristics of the rat strains.
Collapse
|
18
|
Hatirnaz S, Basbug A, Akarsu S, Hatirnaz E, Demirci H, Dahan MH. Outcomes of random start versus clomiphene citrate and gonadotropin cycles in occult premature ovarian insufficiency patients, refusing oocyte donation: a retrospective cohort study. Gynecol Endocrinol 2018; 34:949-954. [PMID: 29847194 DOI: 10.1080/09513590.2018.1473361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
The aim of this study is to present the clinical outcomes of a random start, a spontaneous folliculogenesis protocol versus Clomiphene Citrate and Gonadotropin treatment in women with occult premature ovarian insufficiency. Women underwent treatment between 1 February 2009, and 30 May 2016. 41 women were treated with the random start protocol while 48 cases received ovarian stimulation with clomiphene and gonadotropins. All included cases met the criteria of 4 months of oligo-ovulation, follicular-stimulating hormone levels over 30 IU/L and anti-Mullerian hormone levels below 0.30 ng/mL. The random start protocol involved following the subjects for up to 6 months until spontaneous folliculogenesis occurred. The mean number of oocytes collected, mature oocytes, fertilized oocytes, and grade II embryos were significantly higher in the random start protocol (p < .05). The doses of gonadotropin administration and hCG were significantly lower in the random start protocol (p < .05). The clinical pregnancy and live birth rates were significantly higher in the random start protocol (p < .05). Likely stimulation is of little benefit in women with occult premature ovarian insufficiency. Observation while waiting for spontaneous folliculogenesis results in better outcomes, and less oocyte collections.
Collapse
Affiliation(s)
- Safak Hatirnaz
- a IVF Unit, Department of Obstetrics & Gynecology , Medicana Samsun International Hospital , Samsun , Turkey
| | - Alper Basbug
- b Gynecology and Obstetrics Department , Duzce University School of Medicine , Duzce , Turkey
| | - Suleyman Akarsu
- c Department of Obstetrics and Gynecology , Yüksek İhtisas University , Ankara , Turkey
| | - Ebru Hatirnaz
- a IVF Unit, Department of Obstetrics & Gynecology , Medicana Samsun International Hospital , Samsun , Turkey
| | - Hakan Demirci
- d Department of Family Medicine , Yüksek Ihtisas Training and Research Hospital,University of Health Sciences , Bursa , Turkey
| | - Michael H Dahan
- e Obstetrics and Gynecology Department , McGill University , Montreal , Canada
| |
Collapse
|
19
|
Jedidi I, Ouchari M, Yin Q. Sex chromosomes-linked single-gene disorders involved in human infertility. Eur J Med Genet 2018; 62:103560. [PMID: 31402110 DOI: 10.1016/j.ejmg.2018.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 10/01/2018] [Accepted: 10/24/2018] [Indexed: 10/28/2022]
Abstract
Human infertility is a healthcare problem that has a worldwide impact. Genetic causes of human infertility include chromosomal aneuploidies and rearrangements and single-gene defects. The sex chromosomes (X and Y) are critical players in human fertility since they contain several genes essential for sex determination and reproductive traits for both men and women. This paper provides a review of the most common sex chromosomes-linked single-gene disorders involved in human infertility and their corresponding phenotypes. In addition to the Y-linked SRY gene, which mutations may cause XY gonadal dysgenesis and sex reversal, the deletions of genes present in AZF regions of the Y chromosome (DAZ, RBMY, DBY and USP9Y genes) are implicated in varying degrees of spermatogenic dysfunction. Furthermore, a list of X-linked genes (KAL1, NR0B1, AR, TEX11, FMR1, PGRMC1, BMP15 and POF1 and 2 regions genes (XPNPEP2, POF1B, DACH2, CHM and DIAPH2)) were reported to have critical roles in pubertal and reproductive deficiencies in humans, affecting only men, only women or both sexes. Mutations in these genes may be transmitted to the offspring by a dominant or a recessive inheritance.
Collapse
Affiliation(s)
- Ines Jedidi
- Faculty of Medicine of Sousse, Sousse, Tunisia.
| | - Mouna Ouchari
- Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Qinan Yin
- Clinical Center, National Institutes of Health, Bethesda, MD, USA; Department of Obstetrics and Gynecology, China Meitan General Hospital, Beijing, China
| |
Collapse
|
20
|
Beke A, Piko H, Haltrich I, Karcagi V, Rigo J, Molnar MJ, Fekete G. Study of patterns of inheritance of premature ovarian failure syndrome carrying maternal and paternal premutations. BMC MEDICAL GENETICS 2018; 19:113. [PMID: 29986653 PMCID: PMC6038184 DOI: 10.1186/s12881-018-0634-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Premature ovarian failure / primary ovarian insufficiency (POF/POI) associated with the mutations of the FMR1 (Fragile-X Mental Retardation 1) gene belongs to the group of the so-called trinucleotide expansion diseases. Our aim was to analyse the relationship between the paternally inherited premutation (PIP) and the maternally inherited premutation (MIP) by the examination of the family members of women with POF, carrying the premutation allele confirmed by molecular genetic testing. METHODS Molecular genetic testing was performed in the patients of the 1st Department of Obstetrics and Gynecology with suspected premature ovarian failure. First we performed the southern blot analyses and for the certified premutation cases we used the Repeat Primed PCR. RESULTS Due to POF/POI, a total of 125 patients underwent genetic testing. The FMR1 gene trinucleotide repeat number was examined in the DNA samples of the patients, and in 15 cases (12%) deviations (CGG repeat number corresponding to premutation or gray zone) were detected. In 6 cases out of the 15 cases the CGG repeat number fell within the range of the so-called gray zone (41-54 CGG repeat) (4.8%, 6/125), and the FMR1 premutation (55-200 CGG repeat) ratio was 7.2% (9/125). In 4 out of the 15 cases we found differences in both alleles, one was a premutation allele, and the other allele showed a repeat number belonging to the gray zone. Out of 15 cases, only maternal inheritance (MIP) was detected in 2 cases, in one case the premutation allele (91 CGG repeat number), while in the other case an allele belonging to the gray zone (41 CGG repeat number) were inherited from their mothers. In 10 out of 15 cases, the patient inherited the premutation allele only from the father (PIP). In 5 out of the 10 cases (50%) the premutation allele was inherited from the father, and the repeat number ranged from 55 to 133. Out of 125 cases, 9 patients had detectable cytogenetic abnormalities (7.2%). CONCLUSIONS The RP-PCR method can be used to define the smaller premutations and the exact CGG number. Due to the quantitative nature of the RP-PCR, it is possible to detect the mosaicism as well.
Collapse
Affiliation(s)
- Artur Beke
- 1st Department of Obstetrics and Gynecology, Semmelweis University, Baross u. 27, Budapest, 1428, Hungary.
| | - Henriett Piko
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Iren Haltrich
- 2nd Department of Pediatrics, Semmelweis University fekete, Budapest, Hungary
| | - Veronika Karcagi
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Janos Rigo
- 1st Department of Obstetrics and Gynecology, Semmelweis University, Baross u. 27, Budapest, 1428, Hungary
| | - Maria Judit Molnar
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - György Fekete
- 2nd Department of Pediatrics, Semmelweis University fekete, Budapest, Hungary
| |
Collapse
|
21
|
Thakur M, Feldman G, Puscheck EE. Primary ovarian insufficiency in classic galactosemia: current understanding and future research opportunities. J Assist Reprod Genet 2017; 35:3-16. [PMID: 28932969 DOI: 10.1007/s10815-017-1039-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/03/2017] [Indexed: 02/06/2023] Open
Abstract
Classic galactosemia is an inborn error of the metabolism with devastating consequences. Newborn screening has been successful in markedly reducing the acute neonatal symptoms from this disorder. The dramatic response to dietary treatment is one of the major success stories of newborn screening. However, as children with galactosemia achieve adulthood, they face long-term complications. A majority of women with classic galactosemia develop primary ovarian insufficiency and resulting morbidity. The underlying pathophysiology of this complication is not clear. This review focuses on the reproductive issues seen in girls and women with classic galactosemia. Literature on the effects of classic galactosemia on the female reproductive system was reviewed by an extensive Pubmed search (publications from January 1975 to January 2017) using the keywords: galactosemia, ovarian function/dysfunction, primary ovarian insufficiency/failure, FSH, oxidative stress, fertility preservation. In addition, articles cited in the search articles and literature known to the authors was also included in the review. Our understanding of the role of galactose metabolism in the ovary is limited and the pathogenic mechanisms involved in causing primary ovarian insufficiency are unclear. The relative rarity of galactosemia makes it difficult to accumulate data to determine factors defining timing of ovarian dysfunction or treatment/fertility preservation options for this group of women. In this review, we present reproductive challenges faced by women with classic galactosemia, highlight the gaps in our understanding of mechanisms leading to primary ovarian insufficiency in this population, discuss new advances in fertility preservation options, and recommend collaboration between reproductive medicine and metabolic specialists to improve fertility in these women.
Collapse
Affiliation(s)
- Mili Thakur
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Division of Genetic, Genomic and Metabolic Disorders, Department of Pediatrics and Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,The Fertility Center, 3230 Eagle Park Dr. NE, Suite 100, Grand Rapids, MI, 49525, USA.
| | - Gerald Feldman
- Division of Genetic, Genomic and Metabolic Disorders, Department of Pediatrics and Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Elizabeth E Puscheck
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
22
|
Chapman C, Cree L, Shelling AN. The genetics of premature ovarian failure: current perspectives. Int J Womens Health 2015; 7:799-810. [PMID: 26445561 PMCID: PMC4590549 DOI: 10.2147/ijwh.s64024] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Premature ovarian failure (POF) is a common cause of infertility in women, characterized by amenorrhea, hypoestrogenism, and elevated gonadotropin levels in women under the age of 40. Many genes have been identified over the past few years that contribute to the development of POF. However, few genes have been identified that can explain a substantial proportion of cases of POF. The unbiased approaches of genome-wide association studies and next-generation sequencing technologies have identified several novel genes implicated in POF. As only a small proportion of genes influencing idiopathic POF have been identified thus far, it remains to be determined how many genes and molecular pathways may influence idiopathic POF development. However, owing to POF’s diverse etiology and genetic heterogeneity, we expect to see the contribution of several new and novel molecular pathways that will greatly enhance our understanding of the regulation of ovarian function. Future genetic studies in large cohorts of well-defined, unrelated, idiopathic POF patients will provide a great opportunity to identify the missing heritability of idiopathic POF. The identification of several causative genes may allow for early detection and would provide better opportunity for early intervention, and furthermore, the identification of specific gene defects will help direct potential targets for future treatment.
Collapse
Affiliation(s)
- Chevy Chapman
- Department of Obstetrics and Gynecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lynsey Cree
- Department of Obstetrics and Gynecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrew N Shelling
- Department of Obstetrics and Gynecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Alvarez-Mora MI, Rodriguez-Revenga L, Madrigal I, Garcia-Garcia F, Duran M, Dopazo J, Estivill X, Milà M. Deregulation of key signaling pathways involved in oocyte maturation in FMR1 premutation carriers with Fragile X-associated primary ovarian insufficiency. Gene 2015; 571:52-7. [PMID: 26095811 DOI: 10.1016/j.gene.2015.06.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/12/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
FMR1 premutation female carriers are at risk for Fragile X-associated primary ovarian insufficiency (FXPOI). Insights from knock-in mouse model have recently demonstrated that FXPOI is due to an increased rate of follicle depletion or an impaired development of the growing follicles. Molecular mechanisms responsible for this reduced viability are still unknown. In an attempt to provide new data on the mechanisms that lead to FXPOI, we report the first investigation involving transcription profiling of total blood from FMR1 premutation female carriers with and without FXPOI. A total of 16 unrelated female individuals (6 FMR1 premutated females with FXPOI; 6 FMR1 premutated females without FXPOI; and 4 no-FXPOI females) were studied by whole human genome oligonucleotide microarray (Agilent Technologies). Fold change analysis did not show any genes with significant differential gene expression. However, functional profiling by gene set analysis showed large number of statistically significant deregulated GO annotations as well as numerous KEGG pathways in FXPOI females. These results suggest that the impairment of fertility in these females might be due to a generalized deregulation of key signaling pathways involved in oocyte maturation. In particular, the vasoendotelial growth factor signaling, the inositol phosphate metabolism, the cell cycle, and the MAPK signaling pathways were found to be down-regulated in FXPOI females. Furthermore, a high statistical enrichment of biological processes involved in cell death and survival were found deregulated among FXPOI females. Our results provide new strategic approaches to further investigate the molecular mechanisms and potential therapeutic targets for FXPOI not focused in a single gene but rather in the set of genes involved in these pathways.
Collapse
Affiliation(s)
- M I Alvarez-Mora
- CIBER de Enfermedades Raras, Hospital Clínic, 08036 Barcelona, Spain; Biochemistry and Molecular Genetics Department, Hospital Clinic, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) 08036 Barcelona, Spain.
| | - L Rodriguez-Revenga
- CIBER de Enfermedades Raras, Hospital Clínic, 08036 Barcelona, Spain; Biochemistry and Molecular Genetics Department, Hospital Clinic, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) 08036 Barcelona, Spain.
| | - I Madrigal
- CIBER de Enfermedades Raras, Hospital Clínic, 08036 Barcelona, Spain; Biochemistry and Molecular Genetics Department, Hospital Clinic, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) 08036 Barcelona, Spain.
| | - F Garcia-Garcia
- Computational Genomics Department, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain.
| | - M Duran
- Obstetrics and Gynecology Department Hospital Clinic, 08036 Barcelona, Spain.
| | - J Dopazo
- Computational Genomics Department, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; Functional Genomics Node, INB, Centro de Investigación Príncipe Felipe, Valencia, Spain; CIBER de Enfermedades Raras, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain.
| | - X Estivill
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08005 Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Centre for Genomic Regulation, 08003 Barcelona, Spain; Genomics and Personalized Medicine Section, Dexeus Woman's Health, 08028 Barcelona, Spain.
| | - M Milà
- CIBER de Enfermedades Raras, Hospital Clínic, 08036 Barcelona, Spain; Biochemistry and Molecular Genetics Department, Hospital Clinic, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) 08036 Barcelona, Spain.
| |
Collapse
|
24
|
Le Quesne Stabej P, Williams HJ, James C, Tekman M, Stanescu HC, Kleta R, Ocaka L, Lescai F, Storr HL, Bitner-Glindzicz M, Bacchelli C, Conway GS. STAG3 truncating variant as the cause of primary ovarian insufficiency. Eur J Hum Genet 2015; 24:135-8. [PMID: 26059840 PMCID: PMC4795223 DOI: 10.1038/ejhg.2015.107] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/09/2015] [Accepted: 04/03/2015] [Indexed: 12/30/2022] Open
Abstract
Primary ovarian insufficiency (POI) is a distressing cause of infertility in young women. POI is heterogeneous with only a few causative genes having been discovered so far. Our objective was to determine the genetic cause of POI in a consanguineous Lebanese family with two affected sisters presenting with primary amenorrhoea and an absence of any pubertal development. Multipoint parametric linkage analysis was performed. Whole-exome sequencing was done on the proband. Linkage analysis identified a locus on chromosome 7 where exome sequencing successfully identified a homozygous two base pair duplication (c.1947_48dupCT), leading to a truncated protein p.(Y650Sfs*22) in the STAG3 gene, confirming it as the cause of POI in this family. Exome sequencing combined with linkage analyses offers a powerful tool to efficiently find novel genetic causes of rare, heterogeneous disorders, even in small single families. This is only the second report of a STAG3 variant; the first STAG3 variant was recently described in a phenotypically similar family with extreme POI. Identification of an additional family highlights the importance of STAG3 in POI pathogenesis and suggests it should be evaluated in families affected with POI.
Collapse
Affiliation(s)
| | - Hywel J Williams
- Department of Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | - Chela James
- Department of Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | | | | | - Robert Kleta
- Department of Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK.,Division of Medicine, UCL, London, UK
| | - Louise Ocaka
- Department of Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | - Francesco Lescai
- Department of Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Chiara Bacchelli
- Department of Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | - Gerard S Conway
- Reproductive Medicine Unit, Institute for Women's Health, University College London Hospitals, London, UK
| | | |
Collapse
|
25
|
|
26
|
Espinosa MA, Ríos MA, Grether-González P, Zavaleta-Abreu M, Luna-Flores MA, Velasco-Herrera B, López CA, Sevilla-Montoya R. Mosaico del cromosoma X en diferentes tejidos de pacientes con falla ovárica prematura. PERINATOLOGÍA Y REPRODUCCIÓN HUMANA 2015. [DOI: 10.1016/j.rprh.2015.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Marchitelli C, Nardone A. Mutations and sequence variants in GDF9, BMP15, and BMPR1B genes in Maremmana cattle breed with single and twin births. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2015. [DOI: 10.1007/s12210-015-0418-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
American ginseng regulates gene expression to protect against premature ovarian failure in rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:767124. [PMID: 25705687 PMCID: PMC4330957 DOI: 10.1155/2015/767124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 12/19/2022]
Abstract
Premature ovarian failure (POF) is defined as lost ovarian functions before the age of 40. Three possible molecular markers (PLA2G4A, miR-29a, and miR-144) have been identified in our previous study by integrated analysis of mRNA and miRNA expression profiles. The present study aimed to evaluate American ginseng root's protective potential against POF by studying transcriptional and protein variations between American ginseng treatments and controls in rats. 4-Vinylcyclohexene diepoxide (VCD) was administered to rats for 14 days to induce POF. Additionally, American ginseng was administered to POF rats for one month, and PLA2G4A, miR-29a, and miR-144 expressions were measured in rat ovaries by qRT-PCR. PLA2G4A protein expression was examined by Western Blot, and PGE2, LH, FSH, and E2 serum levels were detected by ELISA. PLA2G4A mRNA and protein were downregulated in American ginseng-treated rats, miR-29a and miR-144 levels increased, and PGE2 serum levels decreased, while LH, FSH, and E2 increased compared to POF induction alone. Analysis of transcriptional and protein variations suggested that American ginseng protects the ovary against POF by regulating prostaglandin biosynthesis, ovulation, and preventing ovarian aging. High hormone levels (PGE2, FSH, and LH) were reduced, and E2 secretion approached normal levels, leading to improved POF symptoms and abnormal ovulation.
Collapse
|
29
|
Leng L, Tan Y, Gong F, Hu L, Ouyang Q, Zhao Y, Lu G, Lin G. Differentiation of primordial germ cells from induced pluripotent stem cells of primary ovarian insufficiency. Hum Reprod 2015; 30:737-48. [PMID: 25586786 DOI: 10.1093/humrep/deu358] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Can the induced pluripotent stem cells (iPSCs) derived from women with primary ovarian insufficiency (POI) differentiate into germ cells for potential disease modeling in vitro? SUMMARY ANSWER The iPSC lines derived from POI patients with 46, X, del(X)(q26) or 46, X, del(X)(q26)9qh+ could differentiate into germ cells and expressed lower levels of genes in the deletion region of the X chromosome. WHAT IS KNOWN ALREADY iPSC technology has been envisioned as an approach for generating patient-specific stem cells for disease modeling and for developing novel therapies. It has also been confirmed that iPSCs differentiate into germ cells. STUDY DESIGN, SIZE, DURATION We compared the differentiation ability of germ cells and the gene expression level of germ cell-related genes in the X chromosome deletion region of iPSC lines derived from POI patients (n = 2) with an iPSC line derived from normal fibroblasts (n = 1). PARTICIPANTS/MATERIALS, SETTING, METHODS We established three iPSC lines from two patients with partial Xq deletion-induced POI and normal fibroblasts by overexpressing four factors: octamer-binding transcription factor 4 (OCT4), sex-determining region Y-box 2 (SOX2), Nanog homeobox (NANOG), and lin-28 homolog (LIN28), using lentiviral vectors. We then generated stable-transfected fluorescent reporter cell lines under the control of the Asp-Glu-Ala-Asp box polypeptide 4 (DDX4, also called VASA) promoter, and selected clonal derived sublines. We induced subline differentiation into germ cells by adding Wnt3a (30 ng/ml) and bone morphogenetic protein 4 (100 ng/ml). After 12 days of differentiation, green fluorescent protein (GFP)-positive and GFP-negative cells were isolated via fluorescence-activated cell sorting and analyzed for endogenous VASA protein (immunostaining) and for germ cell markers and genes expressed in the deleted region of the X chromosome (quantitative RT-PCR). MAIN RESULTS AND THE ROLE OF CHANCE The POI- and normal fibroblast-derived iPSCs had typical self-renewal and pluripotency characteristics. After stable transfection with the VASA-GFP construct, the sublines POI1-iPS-V.1, POI2-iPS-V.1 and hEF-iPS-V.1 produced green fluorescent cells in the differentiated cultures, and the percentage of GFP-positive cells increased over the 12 days of differentiation to a maximum of 6.9 ± 0.33%, 5.3 ± 0.57% and 8.5 ± 0.29%, respectively, of the total cell population. Immunohistochemical analysis confirmed that endogenous VASA was enriched in the GFP-positive cells. Quantitative reverse transcription-PCR revealed significantly higher expression of germ cell markers [PR domain containing 1, with ZNF domain (PRDM1, BLIMP1), developmental pluripotency-associated 3 (DPPA3, STELLA), deleted in azoospermia-like (DAZL), and VASA (DDX4)] in GFP-positive cells than in GFP-negative cells. Moreover, the GFP-positive cells from POI-iPSCs had reduced expression of the family with sequence similarity 122C (FAM122C), inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma (IKBKG), and RNA binding motif protein, X-linked (RBMX), genes located in the deleted region of the X chromosome and that are highly expressed in differentiated germ cells, compared with cells from normal iPSCs. LIMITATIONS, REASONS FOR CAUTION Gene expression profiling indicated that the germ cells differentiated from POI-iPSCs were pre-meiotic. Therefore, how the differentiated primordial germ cells could progress further to meiosis and form follicles remains to be determined in the study of POI. WIDER IMPLICATIONS OF THE FINDINGS Our results might provide an in vitro model for studying germ cell development in patients with POI. STUDY FUNDING/COMPETING INTERESTS This work was supported by grants from the Major State Basic Research Development Program of China (No. 2012CB944901), the National Science Foundation of China (No. 81222007 and 81471432), the Program for New Century Excellent Talents in University and the Fundamental Research Funds for Central Universities (No. 721500003). The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Lizhi Leng
- Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha 410078, China Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha 410078, China
| | - Yueqiu Tan
- Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha 410078, China Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha 410078, China
| | - Fei Gong
- Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha 410078, China Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha 410078, China
| | - Liang Hu
- Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha 410078, China Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha 410078, China National Engineering and Research Center of Human Stem Cell, Changsha 410078, China
| | - Qi Ouyang
- Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha 410078, China Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha 410078, China National Engineering and Research Center of Human Stem Cell, Changsha 410078, China
| | - Yan Zhao
- National Engineering and Research Center of Human Stem Cell, Changsha 410078, China
| | - Guangxiu Lu
- Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha 410078, China Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha 410078, China National Engineering and Research Center of Human Stem Cell, Changsha 410078, China
| | - Ge Lin
- Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha 410078, China Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha 410078, China National Engineering and Research Center of Human Stem Cell, Changsha 410078, China
| |
Collapse
|
30
|
|
31
|
Genetics of primary ovarian insufficiency: a review. J Assist Reprod Genet 2014; 31:1573-85. [PMID: 25227694 DOI: 10.1007/s10815-014-0342-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022] Open
Abstract
Primary ovarian insufficiency is one of the main causes of female infertility owing to an abnormal ovarian reserve. Its relevance has increased in more recent years due to the fact that age of motherhood is being delayed in developed countries, with the risk of having either primary ovarian insufficiency or less chances of pregnancy when women consider the option of having their first baby. Several exogenous factors can lead to this event, such us viral infections, metabolomic dysfunction, autoimmune diseases, and environmental or iatrogenic factors, although in most cases the mechanism that leads to the disorder is unknown. Genetic factors represent the most commonly identified cause and the impact of sex chromosome abnormalities (e.g., Turner syndrome or X structural abnormalities), autosomal and X-linked mutations on the genesis of primary ovarian insufficiency has also been well described. Yet in most cases, the genetic origin remains unknown and there are multiple candidate genes. This review aims to collect all the genetic abnormalities and genes associated with syndromic and non syndromic primary ovarian insufficiency that have been published in the literature to date using the candidate-gene approach and a genome-wide analysis.
Collapse
|
32
|
Wei LN, Huang R, Li LL, Fang C, Li Y, Liang XY. Reduced and delayed expression of GDF9 and BMP15 in ovarian tissues from women with polycystic ovary syndrome. J Assist Reprod Genet 2014; 31:1483-90. [PMID: 25172094 DOI: 10.1007/s10815-014-0319-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/19/2014] [Indexed: 01/29/2023] Open
Abstract
PURPOSE Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) play crucial roles in follicular development and oocyte maturation. This study aimed to investigate and compare the expression of these proteins in ovarian tissues of women with and without polycystic ovary syndrome (PCOS). METHODS Ovarian tissues from 28 patients with PCOS and 26 normal ovulatory women were collected, and the expression of GDF9 and BMP15 in oocytes and granulosa cells was evaluated via immunohistochemical staining. RESULTS GDF9 and BMP15 were first expressed in primordial follicles at very low levels, and their expression increased gradually with follicular development, reaching the highest levels in Graafian follicles. However, less GDF9 and BMP15 expression was observed in primordial, primary, and secondary follicles in ovarian tissues of PCOS patients compared with levels in the control tissues (P < 0.05). In Graafian follicles, GDF9 and BMP15 expression reached comparable levels in the PCOS and control groups (P > 0.05). CONCLUSIONS The expression of GDF9 and BMP15 in ovarian tissues varies among the developmental stages in both oocytes and granulosa cells in human ovarian tissues. The expression of these proteins is reduced and delayed in the early follicular stage in PCOS ovarian tissues, and these differences in expression may be associated with aberrant follicular development in patients with PCOS.
Collapse
Affiliation(s)
- Li-Na Wei
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, 17th Shou-gou-ling Rd, Guangzhou, 510655, China
| | | | | | | | | | | |
Collapse
|
33
|
Exposure to bisphenol A at physiological concentrations observed in Chinese children promotes primordial follicle growth through the PI3K/Akt pathway in an ovarian culture system. Toxicol In Vitro 2014; 28:1424-9. [PMID: 25108129 DOI: 10.1016/j.tiv.2014.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 06/21/2014] [Accepted: 07/19/2014] [Indexed: 11/20/2022]
Abstract
The worldwide increase in the use of bisphenol A (BPA) has resulted in increased human exposure, which could affect human reproductive function. Few studies have investigated the effect of BPA exposure on the primordial follicle pool. In this study, we employed a neonatal ovarian culture system comprising organ obtained from female C57BL/6 pups on postnatal day 4 to assess the effect of BPA on the primordial follicle pool. Ovaries were cultured with BPA (0.1 μM, physiological concentration found in children's blood, and 1 μM, 10 μM) or vehicle for 10 days. Our study revealed that the primary follicle number increased during the early time points (⩽5 days), and we observed a reduction in the primordial follicle pool at a later time point (day 10). This reduction at day 10 was due to increased follicle activation and reduced follicle atresia, as determined by immunohistochemistry for Ki-67 and active caspase-3. Then we examined the phosphatidylinositol-3-kinase (PI3K)/Akt pathway, which is known to be important for early follicle growth. BPA exposure induced the upregulation of the PI3K/Akt pathway, which was reversed by concomitant treatment with PI3K inhibitor. Our results reveal a novel mechanism for BPA-induced primordial follicle activation that involves the PI3K/Akt pathway.
Collapse
|
34
|
Feeney A, Nilsson E, Skinner MK. Cytokine (IL16) and tyrphostin actions on ovarian primordial follicle development. Reproduction 2014; 148:321-31. [PMID: 24970835 DOI: 10.1530/rep-14-0246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An ovarian follicle is composed of an oocyte and surrounding theca and granulosa cells. Oocytes are stored in an arrested state within primordial follicles until they are signaled to re-initiate development by undergoing primordial-to-primary follicle transition. Previous gene bionetwork analyses of primordial follicle development identified a number of critical cytokine signaling pathways and genes potentially involved in the process. In the current study, candidate regulatory genes and pathways from the gene network analyses were tested for their effects on the formation of primordial follicles (follicle assembly) and on primordial follicle transition using whole ovary organ culture experiments. Observations indicate that the tyrphostin inhibitor (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one increased follicle assembly significantly, supporting a role for the MAPK signaling pathway in follicle assembly. The cytokine interleukin 16 (IL16) promotes primordial-to-primary follicle transition as compared with the controls, where as Delta-like ligand 4 (DLL4) and WNT-3A treatments have no effect. Immunohistochemical experiments demonstrated the localization of both the cytokine IL16 and its receptor CD4 in the granulosa cells surrounding each oocyte within the ovarian follicle. The tyrphostin LDN193189 (LDN) is an inhibitor of the bone morphogenic protein receptor 1 within the TGFB signaling pathway and was found to promote the primordial-to-primary follicle transition. Observations support the importance of cytokines (i.e., IL16) and cytokine signaling pathways in the regulation of early follicle development. Insights into regulatory factors affecting early primordial follicle development are provided that may associate with ovarian disease and translate to improved therapy in the future.
Collapse
Affiliation(s)
- Amanda Feeney
- School of Biological SciencesCenter for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236, USA
| | - Eric Nilsson
- School of Biological SciencesCenter for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236, USA
| | - Michael K Skinner
- School of Biological SciencesCenter for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236, USA
| |
Collapse
|
35
|
Ethnic specificity of variants of the ESR1, HK3, BRSK1 genes and the 8q22.3 locus: No association with premature ovarian failure (POF) in Serbian women. Maturitas 2014; 77:64-7. [DOI: 10.1016/j.maturitas.2013.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/27/2013] [Accepted: 09/09/2013] [Indexed: 02/04/2023]
|
36
|
Jiang Y, Zhao J, Qi HJ, Li XL, Zhang SR, Song DW, Yu CY, Gao JG. Accelerated ovarian aging in mice by treatment of busulfan and cyclophosphamide. J Zhejiang Univ Sci B 2013; 14:318-24. [PMID: 23549849 DOI: 10.1631/jzus.b1200181] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Busulfan/cyclophosphamide (Bu/Cy) conditioning regimen has been widely used to treat cancer patients, while their effects on major internal organs in females are not fully understood. We treated female mice with Bu/Cy, and examined the histopathology of major internal organs on Day 30 after the treatment. The results show that Bu/Cy treatment affected the ovaries most extensively, while it had less effect on the spleen, lungs, and kidneys, and no effect on the heart, liver, stomach, and pancreas. To better understand the effect of Bu/Cy on the ovaries, we counted follicles, and determined the levels of ovarian steroids. The Bu/Cy-treated mice showed a reduction of primordial and primary follicles (P<0.01) on Day 30 and a marked loss of follicles at all developmental stages (P<0.01) on Day 60. Plasma levels of estradiol and progesterone in Bu/Cy-treated mice decreased by 43.9% and 61.4%, respectively. Thus, there was a gradual process of follicle loss and low estradiol in Bu/Cy-treated mice; this is a profile similar to what is found in women with premature ovarian failure (POF). The Bu/Cy-treated mice may serve as a useful animal model to study the dynamics of follicle loss in women undergoing POF.
Collapse
Affiliation(s)
- Yan Jiang
- Key Laboratory of the Ministry of Education for Experimental Teratology and School of Life Science, Shandong University, Jinan 250100, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Gao F, Zhang J, Wang X, Yang J, Chen D, Huff V, Liu YX. Wt1 functions in ovarian follicle development by regulating granulosa cell differentiation. Hum Mol Genet 2013; 23:333-41. [DOI: 10.1093/hmg/ddt423] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
38
|
Zhao Z, Wei D, Mu Y, Qin Y, Li G, Cui L, Chen ZJ. Mutational analysis of SKP2 and P27 in Chinese Han women with premature ovarian failure. Reprod Biomed Online 2013; 27:104-6. [PMID: 23665265 DOI: 10.1016/j.rbmo.2013.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/28/2013] [Accepted: 03/28/2013] [Indexed: 10/27/2022]
Abstract
P27 and SKP2, a major regulator of P27, play a crucial role in ovarian function in mice. Both P27-deficient and SKP2-deficient female mice develop premature ovarian failure (POF). The coding regions of SKP2 and P27 were examined in 200 Chinese women with POF and 200 control volunteers. This study is the first to investigate SKP2 in POF. No plausible pathogenic mutations were detected. The results suggest that mutations in SKP2 and P27 are not common in Chinese Han women with POF.
Collapse
Affiliation(s)
- Zhiyi Zhao
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan 250021, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Wang X, He Y, Liu M, Fu X. Lentivirus-mediated bcl-2 gene therapy improves function and structure of chemotherapy-damaged ovaries in wistar rats. Am J Reprod Immunol 2013; 69:518-28. [PMID: 23311825 DOI: 10.1111/aji.12048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 10/23/2012] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE This study aimed to explore the roles and mechanisms of lentivirus-mediated bcl-2 gene therapy in repairing the function and structure of chemotherapy-damaged ovaries in rats. METHOD OF STUDY The lentivirus vector carrying the bcl-2 gene (pGC-FU -EGFP-bcl-2) was constructed and condensed at a high titer. Wistar rats were divided into seven groups based on the treatment they were given: no treatment [the normal control (NC) group]; intraperitoneal injection of cyclophosphamide (the CTX group); bilateral ovarian injection of pGC-FU-EGFP-bcl-2 (the bcl-2 group) or empty vector pGC-FU-EGFP (the enhanced green fluorescent protein (EGFP) group); bilateral ovarian injection of normal saline (the NS + CTX group), pGC-FU-EGFP (the EGFP + CTX group), or pGC-FU-EGFP-bcl-2 (the bcl-2 + CTX group) followed by intraperitoneal injection of CTX. At 15, 30, 45, and 60 days after injection, the rats were killed, serum levels of estradiol (E₂) and follicle-stimulating hormone (FSH) were detected by radioimmunoassay; ovarian structure and follicles were observed under a microscope, the apoptosis of granulosa cells was detected by terminal deoxynucleotidyide transferase-mediated biotin-dUTP biotin nick-end labeling, and the expression of Bcl-2 in the ovaries was detected by Western blotting. RESULTS After the injection of pGC-FU-EGFP-bcl-2, the serum level of E₂ was elevated, whereas that of FSH was dropped, follicles were increased, the CTX-induced apoptosis of granulosa cells was inhibited, and the expression of Bcl-2 was up-regulated. CONCLUSION The lentivirus-mediated bcl-2 gene therapy can improve ovarian function and structure damaged by chemotherapy and, therefore, might be a potential method to treat CTX-induced pre-mature ovarian failure.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | | | | | | |
Collapse
|
40
|
Jin M, Yu Y, Huang H. An update on primary ovarian insufficiency. SCIENCE CHINA-LIFE SCIENCES 2012; 55:677-86. [PMID: 22932883 DOI: 10.1007/s11427-012-4355-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/24/2012] [Indexed: 12/16/2022]
Abstract
Primary ovarian insufficiency (POI) occurs in about 1% of female population under the age of 40, leading to reproductive problems, an earlier encounter with menopausal symptoms, and complicated diseases. There are three presumable mechanisms involved in the development of POI, namely apoptosis acceleration, follicular maturation blocking and premature follicle activation, through the following studied causes: (i) chromosomal abnormalities or gene mutations: mostly involve X chromosome, such as FMR1 premutation; more and more potentially causal genes have been screened recently; (ii) metabolic disorders such as classic galactosaemia and 17-OH deficiency; (iii) autoimmune mediated ovarian damage: observed alone or with some certain autoimmune disorders and syndromes; but the specificity and sensitivity of antibodies towards ovary are still questionable; (iv) iatrogenic: radiotherapy or chemotherapy used in cancer treatment, as well as pelvic surgery with potential threat to ovaries' blood supply can directly damage ovarian function; (v) virus infection such as HIV and mumps; (vi) toxins and other environmental/lifestyle factors: cigarette smoking, toxins (e.g., 4-vinylcyclohexene diepoxide), and other environmental factors are associated with the development of POI. The etiology of a majority of POI cases is not identified, and is believed to be multifactorial. Strategies to POI include hormone replacement and infertility treatment. Assisted conception with donated oocytes has been proven to achieve pregnancy in POI women. Embryo cryopreservation, ovarian tissue cryopreservation and oocyte cryopreservation have been used to preserve ovarian reserve in women undergoing cancer treatments.
Collapse
Affiliation(s)
- Min Jin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | | | | |
Collapse
|
41
|
Nilsson E, Larsen G, Manikkam M, Guerrero-Bosagna C, Savenkova MI, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of ovarian disease. PLoS One 2012; 7:e36129. [PMID: 22570695 PMCID: PMC3343040 DOI: 10.1371/journal.pone.0036129] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/30/2012] [Indexed: 01/21/2023] Open
Abstract
The actions of environmental toxicants and relevant mixtures in promoting the epigenetic transgenerational inheritance of ovarian disease was investigated with the use of a fungicide, a pesticide mixture, a plastic mixture, dioxin and a hydrocarbon mixture. After transient exposure of an F0 gestating female rat during embryonic gonadal sex determination, the F1 and F3 generation progeny adult onset ovarian disease was assessed. Transgenerational disease phenotypes observed included an increase in cysts resembling human polycystic ovarian disease (PCO) and a decrease in the ovarian primordial follicle pool size resembling primary ovarian insufficiency (POI). The F3 generation granulosa cells were isolated and found to have a transgenerational effect on the transcriptome and epigenome (differential DNA methylation). Epigenetic biomarkers for environmental exposure and associated gene networks were identified. Epigenetic transgenerational inheritance of ovarian disease states was induced by all the different classes of environmental compounds, suggesting a role of environmental epigenetics in ovarian disease etiology.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael K. Skinner
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Coronary heart disease (CHD) is the leading cause of death in the aging female population in the developed world. Ovarian endocrinology plays an important role in modulating a woman's CHD risk. We herein present an overview of our current understanding of CHD risk profile in the context of ovarian physiology and senescence. RECENT FINDINGS Endogenous ovarian estrogen has long been recognized to offer cardiac benefit and vascular protection against atherosclerosis. Existing data, however, do not allow for an extrapolation of the recognized cardioprotective implications of the reproductive-age endogenous estrogenic milieu to the use of exogenous estrogen in postmenopausal women. Ongoing efforts are targeting the concept that when reintroduced proximate to onset of ovarian senescence, exogenous estrogen may retard the process of atherogenesis. Until this hypothesis is substantiated, cardioprotection must not be an indication for initiating hormone therapy in menopausal women. SUMMARY Ovarian hormones modulate the processes of atherosclerosis and the mechanisms underlying CHD. The female reproductive hormones offer a cardioprotective milieu that is rapidly attenuated with the cessation of ovarian function (be it following natural menopause or after medical or surgical ovarian extirpation). The role of exogenous hormone therapy, and the nuances of timing and duration of exposure, are still being elucidated.
Collapse
|
43
|
Wang J, Wang B, Song J, Suo P, Ni F, Chen B, Ma X, Cao Y. New candidate gene POU5F1 associated with premature ovarian failure in Chinese patients. Reprod Biomed Online 2011; 22:312-6. [DOI: 10.1016/j.rbmo.2010.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 11/10/2010] [Accepted: 11/10/2010] [Indexed: 11/30/2022]
|
44
|
Schuettler J, Peng Z, Zimmer J, Sinn P, von Hagens C, Strowitzki T, Vogt PH. Variable expression of the Fragile X Mental Retardation 1 (FMR1) gene in patients with premature ovarian failure syndrome is not dependent on number of (CGG)n triplets in exon 1. Hum Reprod 2011; 26:1241-51. [PMID: 21335413 DOI: 10.1093/humrep/der018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Increased expression of the Fragile X Mental Retardation 1 (FMR1) gene in blood cells has been claimed to be associated with variable (CGG)(n) triplet numbers in the 5' untranslated region of this gene. Increased CGG triplet numbers, including that of the so-called premutation range (n= 55-200), were shown to have a risk of <26% to impair ovarian reserve leading to primary ovarian insufficiency and premature ovarian failure (POF). METHODS DNA and RNA samples were isolated from 74 patients with idiopathic POF to evaluate quantitatively the expression of FMR1 in leukocytes and CGG triplet number on FMR1 gene alleles. mRNA levels were normalized and compared with those of control women. Expression of the encoded protein (FMRP) was analysed by immunohistochemistry on ovarian biopsy tissue sections. RESULTS A large variance of the FMR1 transcript level was found in the leukocyte RNA samples, but only in patients with POF, and this variability did not correlate to variance of CGG triplet numbers found on both FMR1 alleles (19 < n > 90). During normal folliculogenesis, FMRP is predominantly expressed in granulosa cells. CONCLUSIONS Our data suggest that FMR1 expression during human folliculogenesis is probably a quantitative trait. Proper function of FMRP in granulosa cells seems to depend on an optimal transcript level. All women with CGG triplet numbers outside the range associated with normal folliculogenesis (26 < n > 34) are therefore expected to have a relaxed FMR1 transcription control. FMR1 transcript levels in leukocytes might therefore be diagnostic for altered FMRP levels in granulosa cells, which will affect the process of folliculogenesis.
Collapse
Affiliation(s)
- J Schuettler
- Department of Gynecology Endocrinology, University Women Hospital, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|