1
|
Hosseini S, Hosseini S, Aligholi H, Salehi M. Embryo vitrification impacts learning and spatial memory by altering the imprinting genes expression level in the mouse offspring' hippocampus. Sci Rep 2025; 15:5419. [PMID: 39948414 PMCID: PMC11825692 DOI: 10.1038/s41598-025-89857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 02/10/2025] [Indexed: 02/16/2025] Open
Abstract
The safety and impact of embryo vitrification as a more reliable approach for cryopreservation in assisted reproductive techniques (ARTs) on the nervous system is uncertain. This study was aimed to investigate the expression level of imprinting genes in the hippocampus of offspring derived from vitrified embryo transfer. The hippocampus of the 2-day-old offspring from three experimental groups included vitrification (blastocysts derived from vitrified embryos), sham (the embryos at the blastocyst stage obtained through in vitro fertilization (IVF)) and control was removed for molecular, histological and behavioral analysis. There was no statistically noteworthy difference in survival, cleavage and blastocysts rate between vitrification and sham groups. Dnmt1, Dnmt3a, 3b and Igf2 upregulated in the vitrified group compared to the sham and control groups. The gene expression level of Meg3 declined dramatically and the intensity of DNA methylation in CpG island of Meg3 significantly elevated in the vitrification group. A notable disparity was observed in the quantity of dark neurons in the hippocampus of the offspring, spatial learning and memory abilities between the control and vitrification groups. According to these results, embryo vitrification may alters gene expression in brain hippocampus tissue and disturbs genomic imprinting, dark neuron formation and spatial memory.
Collapse
Affiliation(s)
- Samira Hosseini
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Hosseini
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Sciorio R, Cantatore C, D'Amato G, Smith GD. Cryopreservation, cryoprotectants, and potential risk of epigenetic alteration. J Assist Reprod Genet 2024; 41:2953-2967. [PMID: 39436484 PMCID: PMC11621268 DOI: 10.1007/s10815-024-03287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
The cryopreservation of gametes and embryos has increased notably over the past 20 years and is now an essential part of assisted reproductive technologies (ARTs). However, because the cryopreservation process is un-physiological for human cells, gametes, and embryos, cryobiologists have suggested diverse methods to successfully cryopreserve human gametes and embryos in order to maintain their viability and assure successful pregnancy. During the first period of early development, major waves of epigenetic reprogramming-crucial for the fate of the embryo-occur. Recently, concerns relating to the increased incidence of epigenetic anomalies and genomic-imprinting disorders have been reported after ARTs and cryopreservation. Epigenetic reprogramming is particularly susceptible to environmental and un-physiological conditions such as ovarian stimulation, embryo culture, and cryopreservation that might collectively affect epigenetics dysregulation. Additionally, recent literature suggests that epigenetic and transcriptomic profiles are sensitive to the stress induced by vitrification, osmotic shock, oxidative stress, rapid temperature and pH changes, and cryoprotectants; it is therefore critical to have a more comprehensive understanding of the potential induced perturbations of epigenetic modifications that may be associated with vitrification. The aim of this paper is to present a critical evaluation of the association of gamete and embryo cryopreservation, use of cryoprotectants, and epigenetic dysregulations with potential long-term consequences for offspring health.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
| | - Clementina Cantatore
- Department of Advanced Reproductive Risk Management and High-Risk Pregnancies, ASL Bari, Reproductive and IVF Unit, PTA Conversano, Conversano, BA, Italy
| | - Giuseppe D'Amato
- Department of Advanced Reproductive Risk Management and High-Risk Pregnancies, ASL Bari, Reproductive and IVF Unit, PTA Conversano, Conversano, BA, Italy
| | - Gary D Smith
- Departments of Obstetrics and Gynecology, Physiology, and Urology and Reproductive Sciences Program, University of Michigan, 4742F Medical Sciences II, 1301 E. Catherine Street, Ann Arbor, MI, 48109-056171500, USA.
| |
Collapse
|
3
|
Li J, Liu Y, Huang H, Jin L. Cardiovascular health of offspring conceived by assisted reproduction technology: a comprehensive review. Front Cardiovasc Med 2024; 11:1287060. [PMID: 38292241 PMCID: PMC10824981 DOI: 10.3389/fcvm.2024.1287060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Recently, the use of assisted reproductive technology (ART) has rapidly increased. As a result, an increasing number of people are concerned about the safety of offspring produced through ART. Moreover, emerging evidence suggests an increased risk of cardiovascular disease (CVD) in offspring conceived using ART. In this review, we discuss the epigenetic mechanisms involved in altered DNA methylation, histone modification, and microRNA expression, as well as imprinting disorders. We also summarize studies on cardiovascular changes and other risk factors for cardiovascular disease, such as adverse intrauterine environments, perinatal complications, and altered metabolism following assisted reproductive technology (ART). Finally, we emphasize the epigenetic mechanisms underlying the increased risk of CVD in offspring conceived through ART, which could contribute to the early diagnosis and prevention of CVD in the ART population.
Collapse
Affiliation(s)
| | | | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Sciorio R, Campos G, Tramontano L, Bulletti FM, Baldini GM, Vinciguerra M. Exploring the effect of cryopreservation in assisted reproductive technology and potential epigenetic risk. ZYGOTE 2023; 31:420-432. [PMID: 37409505 DOI: 10.1017/s0967199423000345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Since the birth of the first baby by in vitro fertilization in 1978, more than 9 million children have been born worldwide using medically assisted reproductive treatments. Fertilization naturally takes place in the maternal oviduct where unique physiological conditions enable the early healthy development of the embryo. During this dynamic period of early development major waves of epigenetic reprogramming, crucial for the normal fate of the embryo, take place. Increasingly, over the past 20 years concerns relating to the increased incidence of epigenetic anomalies in general, and genomic-imprinting disorders in particular, have been raised following assisted reproduction technology (ART) treatments. Epigenetic reprogramming is particularly susceptible to environmental conditions during the periconceptional period and non-physiological conditions such as ovarian stimulation, in vitro fertilization and embryo culture, as well as cryopreservation procedure, might have the potential to independently or collectively contribute to epigenetic dysregulation. Therefore, this narrative review offers a critical reappraisal of the evidence relating to the association between embryo cryopreservation and potential epigenetic regulation and the consequences on gene expression together with long-term consequences for offspring health and wellbeing. Current literature suggests that epigenetic and transcriptomic profiles are sensitive to the stress induced by vitrification, in terms of osmotic shock, temperature and pH changes, and toxicity of cryoprotectants, it is therefore, critical to have a more comprehensive understanding and recognition of potential unanticipated iatrogenic-induced perturbations of epigenetic modifications that may or may not be a consequence of vitrification.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Edinburgh Assisted Conception Programme, EFREC, Royal Infirmary of Edinburgh, UK
| | | | - Luca Tramontano
- Department of Women, Infants and Adolescents, Division of Obstetrics, Geneve University Hospitals, Boulevard de la Cluse 30, Geneve 14, Switzerland
| | - Francesco M Bulletti
- Department Obstetrics and Gynecology, University Hospital of Vaud, Lausanne, Switzerland
| | | | - Marina Vinciguerra
- Department of Biomedical Sciences and Human Oncology, Obstetrics and Gynaecology Section, University of Bari, Italy
- Clinic of Obstetrics and Gynecology 'Santa Caterina Novella', Galatina Hospital, Italy
| |
Collapse
|
5
|
Sciorio R, Manna C, Fauque P, Rinaudo P. Can Cryopreservation in Assisted Reproductive Technology (ART) Induce Epigenetic Changes to Gametes and Embryos? J Clin Med 2023; 12:4444. [PMID: 37445479 DOI: 10.3390/jcm12134444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/05/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Since the birth of Louise Brown in 1978, more than nine million children have been conceived using assisted reproductive technologies (ARTs). While the great majority of children are healthy, there are concerns about the potential epigenetic consequences of gametes and embryo manipulation. In fact, during the preimplantation period, major waves of epigenetic reprogramming occur. Epigenetic reprogramming is susceptible to environmental changes induced by ovarian stimulation, in-vitro fertilization, and embryo culture, as well as cryopreservation procedures. This review summarizes the evidence relating to oocytes and embryo cryopreservation and potential epigenetic regulation. Overall, it appears that the stress induced by vitrification, including osmotic shock, temperature and pH changes, and toxicity of cryoprotectants, might induce epigenetic and transcriptomic changes in oocytes and embryos. It is currently unclear if these changes will have potential consequences for the health of future offspring.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Edinburgh Assisted Conception Programme, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Claudio Manna
- Biofertility IVF and Infertility Center, 00198 Rome, Italy
| | - Patricia Fauque
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Development (GAD) INSERM UMR1231, F-21000 Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, F-21000 Dijon, France
| | - Paolo Rinaudo
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 92037, USA
| |
Collapse
|
6
|
Chen H, Zhang L, Meng L, Liang L, Zhang C. Advantages of vitrification preservation in assisted reproduction and potential influences on imprinted genes. Clin Epigenetics 2022; 14:141. [PMID: 36324168 PMCID: PMC9632035 DOI: 10.1186/s13148-022-01355-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Cryopreservation has important application in assisted reproductive technology (ART). The vitrification technique has been widely used in the cryopreservation of oocytes and embryos, as a large number of clinical results and experimental studies have shown that vitrification can achieve a higher cell survival rate and preimplantation development rate and better pregnancy outcomes. Ovarian tissue vitrification is an alternative method to slow freezing that causes comparatively less damage to the original follicular DNA. At present, sperm preservation mainly adopts slow freezing or rapid freezing (LN2 vapor method), although the vitrification method can achieve higher sperm motility after warming. However, due to the use of high-concentration cryoprotectants and ultra-rapid cooling, vitrification may cause strong stress to gametes, embryos and tissue cells, resulting in potentially adverse effects. Imprinted genes are regulated by epigenetic modifications, including DNA methylation, and show single allele expression. Their accurate regulation and correct expression are very important for the placenta, fetal development and offspring health. Considering that genome imprinting is very sensitive to changes in the external environment, we comprehensively summarized the effect of cryopreservation—especially the vitrification method in ART—on imprinted genes. Animal studies have found that the vitrification of oocytes and embryos can have a significant impact on some imprinted genes and DNA methylation, but the few studies in humans have reported almost no influence, which need to be further explored. This review provides useful information for the safety assessment and further optimization of the current cryopreservation techniques in ART.
Collapse
Affiliation(s)
- Huanhuan Chen
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China.,Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan Province, China
| | - Lei Zhang
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China.,Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan Province, China
| | - Li Meng
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China.,Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan Province, China
| | - Linlin Liang
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China. .,Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan Province, China.
| | - Cuilian Zhang
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China. .,Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan Province, China.
| |
Collapse
|
7
|
Salimi M, Shirazi A, Norouzian M, Jafari A, Edalatkhah H, Mehravar M, Majidi M, Mehrazar MM. H19/Igf2 Expression and Methylation of Histone 3 in Mice Chimeric Blastocysts. Rep Biochem Mol Biol 2021; 9:357-365. [PMID: 33649730 DOI: 10.29252/rbmb.9.3.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Background Currently, the efficient production of chimeric mice and their survival are still challenging. Recent researches have indicated that preimplantation embryo culture media and manipulation lead to abnormal methylation of histone in the H19/Igf2 promotor region and consequently alter their gene expression pattern. This investigation was designed to evaluate the relationship between the methylation state of histone H3 and H19/Igf2 expression in mice chimeric blastocysts. Methods Mouse 129/Sv embryonic stem cells (mESCs) expressing the green fluorescent protein (mESCs-GFP) were injected into the perivitelline space of 2.5 days post-coitis (dpc) embryos (C57BL/6) using a micromanipulator. H3K4 and H3K9 methylation, and H19 and Igf2 expression was measured by immunocytochemistry and q-PCR, respectively, in blastocysts. Results Histone H3 trimethylation in H3K4 and H3K9 in chimeric blastocysts was significantly less and greater, respectively (p< 0.05), than in controls. H19 expression was significantly less (p< 0.05), while Igf2 expression was less, but not significantly so, in chimeric than in control blastocysts. Conclusion Our results showed, that the alteration ofH3K4me3 and H3K9me3 methylation, change H19/Igf2 expression in chimeric blastocysts.
Collapse
Affiliation(s)
- Maryam Salimi
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Department of Gametes and Cloning, Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Mohsen Norouzian
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ameneh Jafari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haleh Edalatkhah
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Maryam Mehravar
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Majidi
- Food and Drug Laboratory Research Center, Food and Drug Organization, MOH & ME, Tehran, Iran
| | - Mohammad Mahdi Mehrazar
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Movahed E, Shabani R, Hosseini S, Shahidi S, Salehi M. Interfering Effects of In Vitro Fertilization and Vitrification on Expression of Gtl2 and Dlk1 in Mouse Blastocysts. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2020; 14:110-115. [PMID: 32681622 PMCID: PMC7382687 DOI: 10.22074/ijfs.2020.5984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022]
Abstract
Background Embryo vitrification is a key instrument in assisted reproductive technologies (ARTs). However, there is increasing concern that vitrification adversely affects embryo development. This study intends to assess the effect of vitrification on developmental competence, in addition to expressions of long non-coding RNA (lncRNA) gene trap locus 2 (Gtl2) and its reciprocal imprinted gene delta-like homolog 1 (Dlk1), in mouse blastocysts. Materials and Methods In this experimental study, we have designed three experimental groups: control (fresh blastocysts collected from superovulated mice), in vitro fertilization (IVF; blastocysts derived from IVF) and vitrification (IVF derived blastocysts subjected to vitrification/warming at the 2-cell stage). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to assess the expression levels of Gtl2 and Dlk1 in the blastocysts. Results The results showed that vitrification group had significantly lower blastocyst and hatching rates compared to the IVF group (P<0.037) and (P<0.041), respectively. Gtl2 was down-regulated and Dlk1 was up-regulated following the IVF and vitrification (P<0.05). Conclusion These results suggested that IVF and vitrification disturbed genomic imprinting and lncRNA gene expressions, which might affect the health of IVF children.
Collapse
Affiliation(s)
- Elham Movahed
- Department of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. Electronic Address:
| | - Sara Hosseini
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solmaz Shahidi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic Address:
| |
Collapse
|
9
|
Choux C, Petazzi P, Sanchez-Delgado M, Hernandez Mora JR, Monteagudo A, Sagot P, Monk D, Fauque P. The hypomethylation of imprinted genes in IVF/ICSI placenta samples is associated with concomitant changes in histone modifications. Epigenetics 2020; 15:1386-1395. [PMID: 32573317 DOI: 10.1080/15592294.2020.1783168] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Although more and more children are born by Assisted Reproductive Technologies (ART), ART safety has not fully been demonstrated. Notably, ART could disturb the delicate step of implantation, and trigger placenta-related adverse outcomes with potential long-term effects, through disrupted epigenetic regulation. We have previously demonstrated that placental DNA methylation was significantly lower after IVF/ICSI than following natural conception at two differentially methylated regions (DMRs) associated with imprinted genes (IGs): H19/IGF2 and KCNQ1OT1. As histone modifications are critical for placental physiology, the aim of this study was to profile permissive and repressive histone marks in placenta biopsies to reveal a better understanding of the epigenetic changes in the context of ART. Utilizing chromatin immunoprecipitation (ChIP) coupled with quantitative PCR, permissive (H3K4me3, H3K4me2, and H3K9ac) and repressive (H3K9me3 and H3K9me2) post-translational histone modifications were quantified. The analyses revealed a significantly higher quantity of H3K4me2 precipitation in the IVF/ICSI group than in the natural conception group for H19/IGF2 and KCNQ1OT1 DMRs (P = 0.016 and 0.003, respectively). Conversely, the quantity of both repressive marks at H19/IGF2 and SNURF DMRs was significantly lower in the IVF/ICSI group than in the natural conception group (P = 0.011 and 0.027 for H19/IGF2; and P = 0.010 and 0.035 for SNURF). These novel findings highlight that DNA hypomethylation at imprinted DMRs following ART is linked with increased permissive/decreased repressive histone marks, altogether promoting a more permissive chromatin conformation. This concomitant change in epigenetic state at IGs at birth might be an important developmental event because of ART manipulations.
Collapse
Affiliation(s)
- Cécile Choux
- GAD (Génétique des anomalies du développement), Université Bourgogne Franche-Comté - INSERM UMR1231 , Dijon, France.,CHU Dijon Bourgogne, Service de Gynécologie-Obstétrique , Dijon, France
| | - Paolo Petazzi
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Biomedical Research Institute , Barcelona, Spain
| | - Marta Sanchez-Delgado
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Biomedical Research Institute , Barcelona, Spain
| | - José R Hernandez Mora
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Biomedical Research Institute , Barcelona, Spain
| | - Ana Monteagudo
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Biomedical Research Institute , Barcelona, Spain
| | - Paul Sagot
- CHU Dijon Bourgogne, Service de Gynécologie-Obstétrique , Dijon, France
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Biomedical Research Institute , Barcelona, Spain.,Biomedical Research Centre, University of East Anglia, Norwich Research Park , Norwich Norfolk, UK
| | - Patricia Fauque
- GAD (Génétique des anomalies du développement), Université Bourgogne Franche-Comté - INSERM UMR1231 , Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction , Dijon, France
| |
Collapse
|
10
|
Salimi M, Shirazi A, Norouzian M, Mehrazar MM, Naderi MM, Shokrgozar MA, Omrani M, Hashemi SM. Histone Modifications of H3K4me3, H3K9me3 and Lineage Gene Expressions in Chimeric Mouse Embryo. CELL JOURNAL 2020; 22:96-105. [PMID: 31606973 PMCID: PMC6791070 DOI: 10.22074/cellj.2020.6443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/18/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Chimeric animal exhibits less viability and more fetal and placental abnormalities than normal animal. This study was aimed to determine the impact of mouse embryonic stem cells (mESCs) injection into the mouse embryos on H3K9me3 and H3K4me3 and cell lineage gene expressions in chimeric blastocysts. MATERIALS AND METHODS In our experiment, at the first step, incorporation of the GFP positive mESCs (GFP-mESCs) 129/Sv into the inner cell mass (ICM) of pre-compacted and compacted morula stage embryos was compared. At the second and third steps, H3K4me3 and H3K9me3 status as well as the expression of Oct4, Nanog, Tead4, and Cdx2 genes were determined in the following groups: i. In vitro blastocyst derived from In vivo morula subjected to mESCs injection (blast/chimeric), ii. In vivo derived blastocyst (blast/In vivo), iii. In vitro blastocyst derived from culture of morula In vivo (blast/morula), and iv. In vitro blastocyst derived from morula In vivo subjected to sham injection (blast/sham). RESULTS Subzonal injection of GFP-mESCs at the pre-compacted embryos produced more chimeric blastocysts than compacted embryos (P<0.05). The number of trophectoderm (TE), ICM, ICM/TE and total cells in chimeric blastocysts were less than the corresponding numbers in blastocysts derived from other groups (P<0.05). In ICM and TE of chimeric blastocysts, the levels of H3K4me3 and H3K9me3 were respectively decreased and increased compared to the blastocysts of the other groups (P<0.05). Expressions of Oct4, Nanog and Tead4 were decreased in chimeric blastocysts compared to the blastocysts of the other groups (P<0.05), while this was not observed for Cdx2. CONCLUSION In the present study, embryo compaction significantly reduced the rate of incorporation of injected mESCs into the ICM. Moreover, in chimeric blastocysts, the levels of H3K9me3 and H3K4me3 were altered. In addition, the expressions of pluripotency and cell fate genes were decreased compared to blastocysts of the other groups.
Collapse
Affiliation(s)
- Maryam Salimi
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran. Electronic Address:
- Department of Gametes and Cloning, Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.Electronic Address:
| | - Mohammad Mehdi Mehrazar
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Mehdi Naderi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | - Mirdavood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Movahed E, Soleimani M, Hosseini S, Akbari Sene A, Salehi M. Aberrant expression of miR-29a/29b and methylation level of mouse embryos after in vitro fertilization and vitrification at two-cell stage. J Cell Physiol 2019; 234:18942-18950. [PMID: 30916357 DOI: 10.1002/jcp.28534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/24/2019] [Accepted: 03/05/2019] [Indexed: 12/17/2022]
Abstract
Proper epigenetic modifications during preimplantation embryo development are important for a successful pregnancy. We aim to investigate the putative influence of in vitro fertilization (IVF) and vitrification on DNA methylation in mouse preimplantation embryos. The study groups consisted of blastocyst-derived vitrified two-cell embryos, nonvitrified embryos, and a control group of in vivo derived blastocysts. We assessed developmental competence, global DNA methylation, relative expression levels of miR-29a/29b, and their target genes, Dnmt3a/3b. Vitrified embryos had a lower developmental rate as compared with nonvitrified embryos. There was no significant decrease in blastocyst cell numbers among studied groups, whereas there was a steady decline in DNA methylation after IVF and vitrification. The levels of miR-29a/29b upregulated in the experimental groups as compared with the control group. IVF and vitrification caused Dnmt3a/3b downregulations in blastocysts. The results of this study have suggested that a relationship exists between IVF and embryo vitrification with methylation interruptions in the blastocysts.
Collapse
Affiliation(s)
- Elham Movahed
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansooreh Soleimani
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Hosseini
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azade Akbari Sene
- IVF Department, Shahid Akbar-Abadi Hospital IVF Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Perinatal outcome and postnatal health in children born from cryopreserved embryos. JOURNAL OF BIO-X RESEARCH 2018. [DOI: 10.1097/jbr.0000000000000020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Jiang Z, Wang Y, Lin J, Xu J, Ding G, Huang H. Genetic and epigenetic risks of assisted reproduction. Best Pract Res Clin Obstet Gynaecol 2017; 44:90-104. [PMID: 28844405 DOI: 10.1016/j.bpobgyn.2017.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022]
Abstract
Assisted reproductive technology (ART) is used primarily for infertility treatments to achieve pregnancy and involves procedures such as in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), and cryopreservation. Moreover, preimplantation genetic diagnosis (PGD) of ART is used in couples for genetic reasons. In ART treatments, gametes and zygotes are exposed to a series of non-physiological processes and culture media. Although the majority of children born with this treatment are healthy, some concerns remain regarding the safety of this technology. Animal studies and follow-up studies of ART-borne children suggested that ART was associated with an increased incidence of genetic, physical, or developmental abnormalities, although there are also observations that contradict these findings. As IVF, ICSI, frozen-thawed embryo transfer, and PGD manipulate gametes and embryo at a time that is important for reprogramming, they may affect epigenetic stability, leading to gamete/embryo origins of adult diseases. In fact, ART offspring have been reported to have an increased risk of gamete/embryo origins of adult diseases, such as early-onset diabetes, cardiovascular disease, and so on. In this review, we will discuss evidence related to genetic, especially epigenetic, risks of assisted reproduction.
Collapse
Affiliation(s)
- Ziru Jiang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yinyu Wang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjing Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guolian Ding
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hefeng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
14
|
Highet AR, Bianco-Miotto T, Pringle KG, Peura A, Bent S, Zhang J, Nottle MB, Thompson JG, Roberts CT. A novel embryo culture media supplement that improves pregnancy rates in mice. Reproduction 2017; 153:327-340. [DOI: 10.1530/rep-16-0517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/30/2016] [Accepted: 12/19/2016] [Indexed: 11/08/2022]
Abstract
The preimplantation embryoinvivois exposed to numerous growth factors in the female reproductive tract, which are not recapitulated in embryo culture mediain vitro. The IGF2 and plasminogen activator systems facilitate blastocyst development. We hypothesized that the addition of IGF2 in combination with urokinase plasminogen activator (uPA) and plasminogen could improve rates of blastocyst hatching and implantation in mice. B6BcF1 and CBAB6F2 mouse embryos were divided into one of four supplemented culture media treatment groups: (1) control (media only); (2) 12.5 nM IGF2; (3) 10 µg/mL uPA and 5 µg/mL plasminogen; or (4) a combination of IGF2, uPA and plasminogen treatments. Embryo development to blastocyst stage and hatching were assessed before transfer to pseudopregnant recipient females and implantation, pregnancy rates and postnatal growth were assessed. After 90.5 h of culture, IGF2 + U + P treatment increased the percentage of B6BcF1 embryos that were hatching/hatched and percentage developing to blastocyst stage compared with controls (P < 0.02). Following B6BcF1 embryo transfer, IGF2 + U + P treatment increased implantation sites at day 8 of pregnancy compared with controls (P < 0.05). Replication in the CBAB6F2 mouse strain showed significant improvements in pregnancy rates at days 8 and 18 but not in blastocyst development. No adverse effects were seen on gestational age, litter size or birthweight, or the reproductive capacity of offspring of IGF2 + U + P treated embryos. For embryos susceptible to detrimental effects ofin vitroculture, IGF2, uPA and plasminogen supplementation of culture media can improve pregnancy success, but the effect of treatment is dependent on the mouse strain.
Collapse
|
15
|
Ross PJ, Canovas S. Mechanisms of epigenetic remodelling during preimplantation development. Reprod Fertil Dev 2017; 28:25-40. [PMID: 27062872 DOI: 10.1071/rd15365] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetics involves mechanisms independent of modifications in the DNA sequence that result in changes in gene expression and are maintained through cell divisions. Because all cells in the organism contain the same genetic blueprint, epigenetics allows for cells to assume different phenotypes and maintain them upon cell replication. As such, during the life cycle, there are moments in which the epigenetic information needs to be reset for the initiation of a new organism. In mammals, the resetting of epigenetic marks occurs at two different moments, which both happen to be during gestation, and include primordial germ cells (PGCs) and early preimplantation embryos. Because epigenetic information is reversible and sensitive to environmental changes, it is probably no coincidence that both these extensive periods of epigenetic remodelling happen in the female reproductive tract, under a finely controlled maternal environment. It is becoming evident that perturbations during the extensive epigenetic remodelling in PGCs and embryos can lead to permanent and inheritable changes to the epigenome that can result in long-term changes to the offspring derived from them, as indicated by the Developmental Origins of Health and Disease (DOHaD) hypothesis and recent demonstration of inter- and trans-generational epigenetic alterations. In this context, an understanding of the mechanisms of epigenetic remodelling during early embryo development is important to assess the potential for gametic epigenetic mutations to contribute to the offspring and for new epimutations to be established during embryo manipulations that could affect a large number of cells in the offspring. It is of particular interest to understand whether and how epigenetic information can be passed on from the gametes to the embryo or offspring, and whether abnormalities in this process could lead to transgenerationally inheritable phenotypes. The aim of this review is to highlight recent progress made in understanding the nature and mechanisms of epigenetic remodelling that ensue after fertilisation.
Collapse
Affiliation(s)
- Pablo Juan Ross
- Department of Animal Science, University of California, Davis, CA 95616 USA
| | - Sebastian Canovas
- LARCEL (Laboratorio Andaluz de Reprogramación Celular), BIONAND, Centro Andaluz de Nanomedicina y Biotecnología Campanillas, Malaga 29590, Spain
| |
Collapse
|
16
|
Souza Cáceres MB, Leite da Silva WA, Bini de Lima AC, de Oliveira JS, Tavares Cardoso CJ, Dos Santos JV, Andrade ER, Franco MM, Poehland R, Melo Sterza FDA. Trimethylation of histone 3 at lysine 4 in cryopreserved bovine embryos produced in vivo with sexed semen. Theriogenology 2016; 86:1944-52. [PMID: 27515411 DOI: 10.1016/j.theriogenology.2016.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/19/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
The production rates of viable embryos using sexed semen through the conventional methodologies of multiple ovulation and embryo transfer are generally not satisfactory. However, the cryopreservation of these embryos is considered efficient. Knowledge of epigenetics can provide new tools or allow for adapting new protocols that could enhance the efficiency of reproductive biotechnologies. The aim of this study was to characterize the pattern of trimethylation of histone 3 at lysine 4 (H3K4me3) in bovine embryos produced in vivo with sexed semen that were submitted to cryopreservation. Bos taurus × Bos indicus cows (n = 5) were superovulated and inseminated with sexed (two sessions) or conventional (two sessions) semen. A portion of the embryos collected on Day 7 was immediately stored in paraformaldehyde (3%) and another portion was stored in paraformaldehyde after cryopreservation/thawing. All embryos from the four groups (fresh, conventional semen; fresh, sexed semen; cryopreserved, conventional semen; and cryopreserved, sexed semen; 15 embryos per group) were evaluated by immunofluorescence under confocal microscopy to identify and quantify the H3K4me3 status. In total, 190 embryos were recovered, 100 of which were produced with conventional semen and 90 with sexed semen. The use of conventional semen after superovulation yielded 72% (72 of 100) viable embryos, which were mostly (81%; 59 of 72) in advanced stages of development (blastocysts and expanded blastocysts). Embryos produced with sexed semen had a lower viability rate (36.7%; 33 of 90), and most of them were collected at earlier stages of development (morulae and early blastocysts; P < 0.05). The H3K4me3 signal was similar among groups; however, there was a difference between morulae and blastocysts. A high intensity of H3K4me3 was observed in bovine embryos produced in vivo, and this pattern did not vary using sexed semen and the slow cryopreservation process. The lower viability of bovine embryos produced with sexed semen could be not explained by differences in H3K4me. Cryopreservation did not alter the pattern of H3K4me3; in this sense, we suggest that it is a process that exerts minimal damage to the embryos.
Collapse
Affiliation(s)
- Mirela B Souza Cáceres
- Animal Reproduction Laboratory, Department of Veterinary Clinic, Agrarian Science Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Wilian A Leite da Silva
- Animal Science, State University of Mato Grosso do Sul (UEMS), Aquidauana, Mato Grosso do Sul, Brazil
| | - Ana C Bini de Lima
- Animal Science, State University of Mato Grosso do Sul (UEMS), Aquidauana, Mato Grosso do Sul, Brazil
| | - Jair S de Oliveira
- Veterinary Medicine, Biomedical Sciences Faculty de Cacoal, Cacoal, Rondonia, Brazil
| | | | - Jonathan V Dos Santos
- Animal Science, State University of Mato Grosso do Sul (UEMS), Aquidauana, Mato Grosso do Sul, Brazil
| | - Evelyn R Andrade
- Veterinary Medicine, Federal University Foundation of Rondonia, Rolim de Moura, Rondonia, Brazil
| | - Mauricio M Franco
- Laboratory of Animal Reproduction, Embrapa-Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Ralf Poehland
- Department of Reproductive Biology, Leibniz Institute for Farm Animal Biology, Dummerstof, Mecklenburg, Germany
| | | |
Collapse
|
17
|
Derakhshan-Horeh M, Abolhassani F, Jafarpour F, Moini A, Karbalaie K, Hosseini SM, Nasr-Esfahani MH. Vitrification at Day3 stage appears not to affect the methylation status of H19/IGF2 differentially methylated region of in vitro produced human blastocysts. Cryobiology 2016; 73:168-74. [PMID: 27497663 DOI: 10.1016/j.cryobiol.2016.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/15/2016] [Accepted: 08/02/2016] [Indexed: 12/25/2022]
Abstract
One of the most widely used assisted reproductive technology (ART) is vitrification. The aim of this study is to evaluate DNA methylation of H19/IGF2 differentially methylation region (DMR) in in vitro produced human blastocysts derived from non-vitrified and vitrified day3 embryos. Day3 embryos derived from ICSI cycles from fertile couples referring for family balancing program were either biopsied or vitrified/warmed and subsequently biopsied. Following biopsy, embryos were cultured to day 5. Day5 blastocysts with desired sex were transferred or vitrified for future use. Blastocysts with un-desired sex were donated for research. The assessment of the embryos was performed in two non-vitrified and vitrified groups. Methylation level of H19/IGF2 DMR was analysed by bisulfite conversion and sequencing at 18 CpG sites (CpGs) located in this region. Results showed that the overall methylated CpGs percentages of this region in the vitrified and non-vitrified groups were 35.3% ± 3.6 and 38.27 ± 4.1%, respectively. The difference between the two groups was not significant. Vitrification of day3 embryo appears to have no adverse effect on DNA methylation status of H19/IGF2 DMR of embryos cultured in vitro to blastocyst stage. These data may have implications for performing frozen embryo cycles transfer instead of fresh embryo transfer cycles, owing to the naturally synchronized uterus and subsequently improved endometrial receptivity in frozen embryo transfer instead of imbalanced hormonal milieu in fresh embryo transfer cycles.
Collapse
Affiliation(s)
| | - Farid Abolhassani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farnoosh Jafarpour
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Ashraf Moini
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Obstetrics and Gynecology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Karbalaie
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sayyed Morteza Hosseini
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Isfahan Fertility & Infertility Center, Isfahan, Iran.
| |
Collapse
|
18
|
Changes in tri-methylation profile of lysines 4 and 27 of histone H3 in bovine blastocysts after cryopreservation. Cryobiology 2015; 71:481-5. [DOI: 10.1016/j.cryobiol.2015.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 12/25/2022]
|