1
|
Jamilloux Y, Romain-Scelle N, Rabilloud M, Morel C, Kodjikian L, Maucort-Boulch D, Bielefeld P, Sève P. Development and Validation of a Bayesian Network for Supporting the Etiological Diagnosis of Uveitis. J Clin Med 2021; 10:3398. [PMID: 34362175 PMCID: PMC8347147 DOI: 10.3390/jcm10153398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022] Open
Abstract
The etiological diagnosis of uveitis is complex. We aimed to implement and validate a Bayesian belief network algorithm for the differential diagnosis of the most relevant causes of uveitis. The training dataset (n = 897) and the test dataset (n = 154) were composed of all incident cases of uveitis admitted to two internal medicine departments, in two independent French centers (Lyon, 2003-2016 and Dijon, 2015-2017). The etiologies of uveitis were classified into eight groups. The algorithm was based on simple epidemiological characteristics (age, gender, and ethnicity) and anatomoclinical features of uveitis. The cross-validated estimate obtained in the training dataset concluded that the etiology of uveitis determined by the experts corresponded to one of the two most probable diagnoses in at least 77% of the cases. In the test dataset, this probability reached at least 83%. For the training and test datasets, when the most likely diagnosis was considered, the highest sensitivity was obtained for spondyloarthritis and HLA-B27-related uveitis (76% and 63%, respectively). The respective specificities were 93% and 54%. This algorithm could help junior and general ophthalmologists in the differential diagnosis of uveitis. It could guide the diagnostic work-up and help in the selection of further diagnostic investigations.
Collapse
Affiliation(s)
- Yvan Jamilloux
- Department of Internal Medicine, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard-Lyon 1, F-69004 Lyon, France;
| | - Nicolas Romain-Scelle
- Service de Biostatistique et Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, Université de Lyon, F-69000 Lyon, France; (N.R.-S.); (M.R.); (C.M.); (D.M.-B.)
- Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique-Santé, CNRS, UMR 5558, F-69100 Villeurbanne, France
| | - Muriel Rabilloud
- Service de Biostatistique et Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, Université de Lyon, F-69000 Lyon, France; (N.R.-S.); (M.R.); (C.M.); (D.M.-B.)
- Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique-Santé, CNRS, UMR 5558, F-69100 Villeurbanne, France
| | - Coralie Morel
- Service de Biostatistique et Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, Université de Lyon, F-69000 Lyon, France; (N.R.-S.); (M.R.); (C.M.); (D.M.-B.)
- Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique-Santé, CNRS, UMR 5558, F-69100 Villeurbanne, France
| | - Laurent Kodjikian
- Department of Ophthalmology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard-Lyon 1, F-69004 Lyon, France;
| | - Delphine Maucort-Boulch
- Service de Biostatistique et Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, Université de Lyon, F-69000 Lyon, France; (N.R.-S.); (M.R.); (C.M.); (D.M.-B.)
- Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique-Santé, CNRS, UMR 5558, F-69100 Villeurbanne, France
| | - Philip Bielefeld
- Department of Internal Medicine, Dijon Bourgogne University Hospital, F-21000 Dijon, France;
| | - Pascal Sève
- Department of Internal Medicine, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard-Lyon 1, F-69004 Lyon, France;
- Research on Healthcare Performance (RESHAPE), INSERM U1290, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| |
Collapse
|