1
|
Han Y, Wang YY, Yang Y, Qiao SQ, Liu ZC, Cui GB, Yan LF. Association between dichotomized VASARI feature and overall survival in glioblastoma patients: a single-institution propensity score matching analysis. Cancer Imaging 2024; 24:109. [PMID: 39155364 PMCID: PMC11330608 DOI: 10.1186/s40644-024-00754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024] Open
Abstract
OBJECTIVES This study aimed to investigate the intra- and inter-observer consistency of the Visually Accessible Rembrandt Images (VASARI) feature set before and after dichotomization, and the association between dichotomous VASARI features and the overall survival (OS) in glioblastoma (GBM) patients. METHODS This retrospective study included 351 patients with pathologically confirmed IDH1 wild-type GBM between January 2016 and June 2022. Firstly, VASARI features were assessed by four radiologists with varying levels of experience before and after dichotomization. Cohen's kappa coefficient (κ) was calculated to measure the intra- and inter-observer consistency. Then, after adjustment for confounders using propensity score matching, Kaplan-Meier curves were used to compare OS differences for each dichotomous VASARI feature. Next, patients were randomly stratified into a training set (n = 211) and a test set (n = 140) in a 3:2 ratio. Based on the training set, Cox proportional hazards regression analysis was adopted to develop combined and clinical models to predict OS, and the performance of the models was evaluated with the test set. RESULTS Eleven VASARI features with κ value of 0.61-0.8 demonstrated almost perfect agreement after dichotomization, with the range of κ values across all readers being 0.874-1.000. Seven VASARI features were correlated with GBM patient OS. For OS prediction, the combined model outperformed the clinical model in both training set (C-index, 0.762 vs. 0.723) and test set (C-index, 0.812 vs. 0.702). CONCLUSION The dichotomous VASARI features exhibited excellent inter- and intra-observer consistency. The combined model outperformed the clinical model for OS prediction.
Collapse
Affiliation(s)
- Yu Han
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, The Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi Province, China
| | - Yu-Yao Wang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, The Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi Province, China
| | - Yang Yang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, The Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi Province, China
| | - Shu-Qi Qiao
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, The Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi Province, China
| | - Zhi-Cheng Liu
- Department of Radiology, The 987th Hospital of Joint Logistic Support Force, People's Liberation Army, 45# Dongfeng Road, Jintai District, Baoji, 721004, Shaanxi Province, China
| | - Guang-Bin Cui
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, The Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi Province, China.
| | - Lin-Feng Yan
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, The Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi Province, China.
| |
Collapse
|
2
|
Pons-Escoda A, Majos C, Smits M, Oleaga L. Presurgical diagnosis of diffuse gliomas in adults: Post-WHO 2021 practical perspectives from radiologists in neuro-oncology units. RADIOLOGIA 2024; 66:260-277. [PMID: 38908887 DOI: 10.1016/j.rxeng.2024.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 06/24/2024]
Abstract
The 2021 World Health Organization classification of CNS tumours was greeted with enthusiasm as well as an initial potential overwhelm. However, with time and experience, our understanding of its key aspects has notably improved. Using our collective expertise gained in neuro-oncology units in hospitals in different countries, we have compiled a practical guide for radiologists that clarifies the classification criteria for diffuse gliomas in adults. Its format is clear and concise to facilitate its incorporation into everyday clinical practice. The document includes a historical overview of the classifications and highlights the most important recent additions. It describes the main types in detail with an emphasis on their appearance on imaging. The authors also address the most debated issues in recent years. It will better prepare radiologists to conduct accurate presurgical diagnoses and collaborate effectively in clinical decision making, thus impacting decisions on treatment, prognosis, and overall patient care.
Collapse
Affiliation(s)
- A Pons-Escoda
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Facultat de Medicina i Ciencies de La Salut, Universitat de Barcelona (UB), Barcelona, Spain.
| | - C Majos
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Neuro-Oncology Unit, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Barcelona, Spain; Diagnostic Imaging and Nuclear Medicine Research Group, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Barcelona, Spain
| | - M Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands; Medical Delta, Delft, The Netherlands
| | - L Oleaga
- Radiology Department, Hospital Clínic Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Nie K, Xiao Y. Radiomics in clinical trials: perspectives on standardization. Phys Med Biol 2022; 68. [PMID: 36384049 DOI: 10.1088/1361-6560/aca388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022]
Abstract
The term biomarker is used to describe a biological measure of the disease behavior. The existing imaging biomarkers are associated with the known tissue biological characteristics and follow a well-established roadmap to be implemented in routine clinical practice. Recently, a new quantitative imaging analysis approach named radiomics has emerged. It refers to the extraction of a large number of advanced imaging features with high-throughput computing. Extensive research has demonstrated its value in predicting disease behavior, progression, and response to therapeutic options. However, there are numerous challenges to establishing it as a clinically viable solution, including lack of reproducibility and transparency. The data-driven nature also does not offer insights into the underpinning biology of the observed relationships. As such, additional effort is needed to establish it as a qualified biomarker to inform clinical decisions. Here we review the technical difficulties encountered in the clinical applications of radiomics and current effort in addressing some of these challenges in clinical trial designs. By addressing these challenges, the true potential of radiomics can be unleashed.
Collapse
Affiliation(s)
- Ke Nie
- Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, Department of Radiation Oncology, New Brunswick, NJ, 08901, United States of America
| | - Ying Xiao
- University of Pennsylvania, Department of Radiation Oncology, 3400 Civic Center Blvd, TRC-2 West Philadelphia, PA 19104, United States of America
| |
Collapse
|
4
|
Byun YH, Park CK. Classification and Diagnosis of Adult Glioma: A Scoping Review. BRAIN & NEUROREHABILITATION 2022; 15:e23. [PMID: 36742083 PMCID: PMC9833487 DOI: 10.12786/bn.2022.15.e23] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Gliomas are primary central nervous system tumors that arise from glial progenitor cells. Gliomas have been classically classified morphologically based on their histopathological characteristics. However, with recent advances in cancer genomics, molecular profiles have now been integrated into the classification and diagnosis of gliomas. In this review article, we discuss the clinical features, imaging findings, and molecular profiles of adult-type diffuse gliomas based on the new 2021 World Health Organization Classifications of Tumors of the central nervous system.
Collapse
Affiliation(s)
- Yoon Hwan Byun
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
6
|
Fathi Kazerooni A, Bagley SJ, Akbari H, Saxena S, Bagheri S, Guo J, Chawla S, Nabavizadeh A, Mohan S, Bakas S, Davatzikos C, Nasrallah MP. Applications of Radiomics and Radiogenomics in High-Grade Gliomas in the Era of Precision Medicine. Cancers (Basel) 2021; 13:cancers13235921. [PMID: 34885031 PMCID: PMC8656630 DOI: 10.3390/cancers13235921] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Radiomics and radiogenomics offer new insight into high-grade glioma biology, as well as into glioma behavior in response to standard therapies. In this article, we provide neuro-oncology, neuropathology, and computational perspectives on the role of radiomics in providing more accurate diagnoses, prognostication, and surveillance of patients with high-grade glioma, and on the potential application of radiomics in clinical practice, with the overarching goal of advancing precision medicine for optimal patient care. Abstract Machine learning (ML) integrated with medical imaging has introduced new perspectives in precision diagnostics of high-grade gliomas, through radiomics and radiogenomics. This has raised hopes for characterizing noninvasive and in vivo biomarkers for prediction of patient survival, tumor recurrence, and genomics and therefore encouraging treatments tailored to individualized needs. Characterization of tumor infiltration based on pre-operative multi-parametric magnetic resonance imaging (MP-MRI) scans may allow prediction of the loci of future tumor recurrence and thereby aid in planning the course of treatment for the patients, such as optimizing the extent of resection and the dose and target area of radiation. Imaging signatures of tumor genomics can help in identifying the patients who benefit from certain targeted therapies. Specifying molecular properties of gliomas and prediction of their changes over time and with treatment would allow optimization of treatment. In this article, we provide neuro-oncology, neuropathology, and computational perspectives on the promise of radiomics and radiogenomics for allowing personalized treatments of patients with gliomas and discuss the challenges and limitations of these methods in multi-institutional clinical trials and suggestions to mitigate the issues and the future directions.
Collapse
Affiliation(s)
- Anahita Fathi Kazerooni
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Stephen J. Bagley
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamed Akbari
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Sanjay Saxena
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Sina Bagheri
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Jun Guo
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Ali Nabavizadeh
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Suyash Mohan
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - MacLean P. Nasrallah
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|