2
|
Laurent D, Riek J, Sinclair CDJ, Houston P, Roubenoff R, Papanicolaou DA, Nagy A, Pieper S, Yousry TA, Hanna MG, Thornton JS, Machado PM. Longitudinal Changes in MRI Muscle Morphometry and Composition in People With Inclusion Body Myositis. Neurology 2022; 99:e865-e876. [PMID: 36038279 PMCID: PMC10513877 DOI: 10.1212/wnl.0000000000200776] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Limited data suggest that quantitative MRI (qMRI) measures have potential to be used as trial outcome measures in sporadic inclusion body myositis (sIBM) and as a noninvasive assessment tool to study sIBM muscle pathologic processes. Our aim was to evaluate changes in muscle structure and composition using a comprehensive multiparameter set of qMRI measures and to assess construct validity and responsiveness of qMRI measures in people with sIBM. METHODS This was a prospective observational cohort study with assessments at baseline (n = 30) and 1 year (n = 26). qMRI assessments include thigh muscle volume (TMV), inter/intramuscular adipose tissue (IMAT), muscle fat fraction (FF), muscle inflammation (T2 relaxation time), IMAT from T2* relaxation (T2*-IMAT), intermuscular connective tissue from T2* relaxation (T2*-IMCT), and muscle macromolecular structure from the magnetization transfer ratio (MTR). Physical performance assessments include sIBM Physical Functioning Assessment (sIFA), 6-minute walk distance, and quantitative muscle testing of the quadriceps. Correlations were assessed using the Spearman correlation coefficient. Responsiveness was assessed using the standardized response mean (SRM). RESULTS After 1 year, we observed a reduction in TMV (6.8%, p < 0.001) and muscle T2 (6.7%, p = 0.035), an increase in IMAT (9.7%, p < 0.001), FF (11.2%, p = 0.030), connective tissue (22%, p = 0.995), and T2*-IMAT (24%, p < 0.001), and alteration in muscle macromolecular structure (ΔMTR = -26%, p = 0.002). A decrease in muscle T2 correlated with an increase in T2*-IMAT (r = -0.47, p = 0.008). Deposition of connective tissue and IMAT correlated with deterioration in sIFA (r = 0.38, p = 0.032; r = 0.34, p = 0.048; respectively), whereas a decrease in TMV correlated with a decrease in quantitative muscle testing (r = 0.36, p = 0.035). The most responsive qMRI measures were T2*-IMAT (SRM = 1.50), TMV (SRM = -1.23), IMAT (SRM = 1.20), MTR (SRM = -0.83), and T2 relaxation time (SRM = -0.65). DISCUSSION Progressive deterioration in muscle quality measured by qMRI is associated with a decline in physical performance. Inflammation may play a role in triggering fat infiltration into muscle. qMRI provides valid and responsive measures that might prove valuable in sIBM experimental trials and assessment of muscle pathologic processes. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that qMRI outcome measures are associated with physical performance measures in patients with sIBM.
Collapse
Affiliation(s)
- Didier Laurent
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom.
| | - Jon Riek
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| | - Christopher D J Sinclair
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| | - Parul Houston
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| | - Ronenn Roubenoff
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| | - Dimitris A Papanicolaou
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| | - Attila Nagy
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| | - Steve Pieper
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| | - Tarek A Yousry
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| | - Michael G Hanna
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| | - John S Thornton
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| | - Pedro M Machado
- From the Novartis Institutes for Biomedical Research (D.L., P.H., R.R., D.A.P.), Basel, Switzerland; BioTel Research (J.R.), Rochester, NY; Neuroradiological Academic Unit (C.D.J.S., T.A.Y., J.S.T.), UCL Institute of Neurology, London, United Kingdom; Isomics Inc. (A.N., S.P.), Cambridge, MA; Department of Medical Physics and Informatics (A.N.), University of Szeged, Hungary; Lysholm Department of Neuroradiology (T.A.Y.), National Hospital for Neurology and Neurosurgery; Department of Neuromuscular Diseases (M.G.H., P.M.M.), UCL Queen Square Institute of Neurology, University College London; and Centre for Rheumatology (P.M.M.), Department of Inflammation, Division of Medicine, University College London, United Kingdom
| |
Collapse
|
5
|
Catalán-García M, Garrabou G, Morén C, Guitart-Mampel M, Gonzalez-Casacuberta I, Hernando A, Gallego-Escuredo JM, Yubero D, Villarroya F, Montero R, O-Callaghan AS, Cardellach F, Grau JM. BACE-1, PS-1 and sAPPβ Levels Are Increased in Plasma from Sporadic Inclusion Body Myositis Patients: Surrogate Biomarkers among Inflammatory Myopathies. Mol Med 2015; 21:817-823. [PMID: 26552061 DOI: 10.2119/molmed.2015.00168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/27/2015] [Indexed: 12/26/2022] Open
Abstract
Sporadic inclusion body myositis (sIBM) is a rare disease that is difficult to diagnose. Muscle biopsy provides three prominent pathological findings: inflammation, mitochondrial abnormalities and fibber degeneration, represented by the accumulation of protein depots constituted by β-amyloid peptide, among others. We aim to perform a screening in plasma of circulating molecules related to the putative etiopathogenesis of sIBM to determine potential surrogate biomarkers for diagnosis. Plasma from 21 sIBM patients and 20 age- and gender-paired healthy controls were collected and stored at -80°C. An additional population of patients with non-sIBM inflammatory myopathies was also included (nine patients with dermatomyositis and five with polymyositis). Circulating levels of inflammatory cytokines (interleukin [IL]-6 and tumor necrosis factor [TNF]-α), mitochondrial-related molecules (free plasmatic mitochondrial DNA [mtDNA], fibroblast growth factor-21 [FGF-21] and coenzyme-Q10 [CoQ]) and amyloidogenic-related molecules (beta-secretase-1 [BACE-1], presenilin-1 [PS-1], and soluble Aβ precursor protein [sAPPβ]) were assessed with magnetic bead-based assays, real-time polymerase chain reaction, enzyme-linked immunosorbent assay (ELISA) and high-pressure liquid chromatography (HPLC). Despite remarkable trends toward altered plasmatic expression of inflammatory and mitochondrial molecules (increased IL-6, TNF-α, circulating mtDNA and FGF-21 levels and decreased content in CoQ), only amyloidogenic degenerative markers including BACE-1, PS-1 and sAPPβ levels were significantly increased in plasma from sIBM patients compared with controls and other patients with non-sIBM inflammatory myopathies (p < 0.05). Inflammatory, mitochondrial and amyloidogenic degeneration markers are altered in plasma of sIBM patients confirming their etiopathological implication in the disease. Sensitivity and specificity analysis show that BACE-1, PS-1 and sAPPβ represent a good predictive noninvasive tool for the diagnosis of sIBM, especially in distinguishing this disease from polymyositis.
Collapse
Affiliation(s)
- Marc Catalán-García
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Glòria Garrabou
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Constanza Morén
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Mariona Guitart-Mampel
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Ingrid Gonzalez-Casacuberta
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Adriana Hernando
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Jose Miquel Gallego-Escuredo
- Department of Biochemistry and Molecular Biology, Institute of Biomedicine (University of Barcelona), University of Barcelona, and CIBEROBN, Barcelona, Spain
| | - Dèlia Yubero
- Clinical Biochemistry Department, Hospital Sant Joan de Déu, Barcelona, Spain, and CIBERER, Valencia, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biology, Institute of Biomedicine (University of Barcelona), University of Barcelona, and CIBEROBN, Barcelona, Spain
| | - Raquel Montero
- Clinical Biochemistry Department, Hospital Sant Joan de Déu, Barcelona, Spain, and CIBERER, Valencia, Spain
| | | | - Francesc Cardellach
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Josep Maria Grau
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| |
Collapse
|