1
|
Ainsworth HC, Baker Frost D, Lim SS, Ramos PS. Breaking research silos to achieve equitable precision medicine in rheumatology. Nat Rev Rheumatol 2025; 21:98-110. [PMID: 39794514 PMCID: PMC11910143 DOI: 10.1038/s41584-024-01204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 01/13/2025]
Abstract
Health disparities in rheumatic disease are well established and urgently need addressing. Obstacles to precision medicine equity span both the clinical and the research domains, with a focus placed on structural barriers limiting equitable health care access and inclusivity in research. Less articulated factors include the use of inaccurate population descriptors and the existence of research silos in rheumatology research, which creates a knowledge gap that precludes addressing the health disparities and fulfilling the goals of precision medicine to understand the 'full patient'. The biopsychosocial model is a research framework that intertwines layers of biological and environmental effects to understand disease. However, very limited rheumatology research bridges across molecular and epidemiological studies of environmental exposures, such as physical and social determinants of health. In this Review, we discuss clinical obstacles to health care equity, including access to health care and the use of inaccurate language when labelling population groups. We explore the goals and data needed for research under the biopsychosocial model. We describe results from a rheumatic disease literature search that highlights the paucity of studies investigating the molecular influences of systemic exposures. We conclude with a list of considerations and recommendations to help achieve equitable precision medicine.
Collapse
Affiliation(s)
- Hannah C Ainsworth
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Wake Forest Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - DeAnna Baker Frost
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| | - S Sam Lim
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Paula S Ramos
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Parodis I, Lanata C, Nikolopoulos D, Blazer A, Yazdany J. Reframing health disparities in SLE: A critical reassessment of racial and ethnic differences in lupus disease outcomes. Best Pract Res Clin Rheumatol 2023; 37:101894. [PMID: 38057256 DOI: 10.1016/j.berh.2023.101894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 12/08/2023]
Abstract
Health disparities in the prevalence and outcomes of systemic lupus erythematosus (SLE) are well documented across racial and ethnic groups. Similar to other chronic diseases, differences in disease severity among individuals with SLE are likely influenced by both genetic predisposition and multiple social determinants of health. However, research in SLE that jointly examines the genetic and environmental contributions to the disease course is limited, resulting in an incomplete understanding of the biologic and social mechanisms that underly health disparities. While research on health disparities can reveal inequalities and inform resource allocation to improve outcomes, research that relies on racial and ethnic categories to describe diverse groups of people can pose challenges. Additionally, results from research comparing outcomes across socially constructed groups without considering other contributing factors can be misleading. We herein comprehensively examine existing literature on health disparities in SLE, including both clinical studies that examine the relationship between self-reported race and ethnicity and disease outcomes and studies that explore the relationships between genomics and lupus outcomes. Having surveyed this body of research, we propose a framework for research examining health disparities in SLE, including ways to mitigate bias in future studies.
Collapse
Affiliation(s)
- Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden; Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Cristina Lanata
- Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dionysis Nikolopoulos
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Ashira Blazer
- Division of Rheumatology, Department of Medicine, Hospital for Special, Surgery, New York, NY, USA
| | - Jinoos Yazdany
- Division of Rheumatology, University of California, San Francisco, USA
| |
Collapse
|
3
|
Stransky O, Hunt N, Richards JS, Birru Talabi M. Exploring Family Planning, Parenting, and Sexual and Reproductive Health Care Experiences of Men with Rheumatic Diseases. J Rheumatol 2021; 49:251-255. [PMID: 34782452 DOI: 10.3899/jrheum.210785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To explore family planning, parenting, and sexual and reproductive health (SRH) care needs and experiences of men with rheumatic diseases. METHODS Men aged 18-45 years who were diagnosed with at least one rheumatic disease and used at least one anti-rheumatic drug were recruited from rheumatology clinics. Research coordinators engaged participants in semi-structured phone interviews. A codebook was developed based on the interview transcripts and used to conduct an inductive thematic analysis. RESULTS Participants ranged in age from 22 to 44 years old (N=20). Most were heterosexual and had at least one child. The most common disease diagnoses were spondyloarthritis, systemic lupus erythematosus, and rheumatoid arthritis. Four themes emerged from the interviews: 1) Men had family planning concerns, particularly related to the heritability of their diseases, their fertility, and potential effects of their medications on their offspring's health; 2) Men felt that fatigue, disability, and/or pain from their diseases either impaired or would impair their abilities to parent; 3) Men often did not discuss sexual dysfunction with their rheumatologists, even when they believed that it arose from their diseases or anti-rheumatic drugs; 4) Men rarely discussed any family planning, parenting, or SRH issues with their rheumatologists-and gender discordance with rheumatologists did not affect men's comfort in discussing these issues. CONCLUSION Men expressed concerns related to family planning, parenting, and SRH, which they rarely discussed with their rheumatologists. Our study suggests that some men's SRH information needs are incompletely addressed in the rheumatology clinical setting.
Collapse
Affiliation(s)
- Olivia Stransky
- Center for Women's Health Research and Innovation (CWHRI), Pittsburgh, PA; Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; Rheumatology Section, Medicine Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA. Conflict of Interest: Dr. Birru Talabi's work was supported by the Harold Amos Medical Faculty Development Program (grant). The authors do not have any financial interests or conflicts of interest to disclose. Corresponding Author Mehret Birru Talabi, S700 Biomedical Science Tower; 3500 Lothrop Street Pittsburgh, PA 15261
| | - Nicole Hunt
- Center for Women's Health Research and Innovation (CWHRI), Pittsburgh, PA; Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; Rheumatology Section, Medicine Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA. Conflict of Interest: Dr. Birru Talabi's work was supported by the Harold Amos Medical Faculty Development Program (grant). The authors do not have any financial interests or conflicts of interest to disclose. Corresponding Author Mehret Birru Talabi, S700 Biomedical Science Tower; 3500 Lothrop Street Pittsburgh, PA 15261
| | - John Steuart Richards
- Center for Women's Health Research and Innovation (CWHRI), Pittsburgh, PA; Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; Rheumatology Section, Medicine Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA. Conflict of Interest: Dr. Birru Talabi's work was supported by the Harold Amos Medical Faculty Development Program (grant). The authors do not have any financial interests or conflicts of interest to disclose. Corresponding Author Mehret Birru Talabi, S700 Biomedical Science Tower; 3500 Lothrop Street Pittsburgh, PA 15261
| | - Mehret Birru Talabi
- Center for Women's Health Research and Innovation (CWHRI), Pittsburgh, PA; Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; Rheumatology Section, Medicine Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA. Conflict of Interest: Dr. Birru Talabi's work was supported by the Harold Amos Medical Faculty Development Program (grant). The authors do not have any financial interests or conflicts of interest to disclose. Corresponding Author Mehret Birru Talabi, S700 Biomedical Science Tower; 3500 Lothrop Street Pittsburgh, PA 15261
| |
Collapse
|
4
|
Durlik-Popińska K, Żarnowiec P, Lechowicz Ł, Gawęda J, Kaca W. Antibodies Isolated from Rheumatoid Arthritis Patients against Lysine-Containing Proteus mirabilis O3 (S1959) Lipopolysaccharide May React with Collagen Type I. Int J Mol Sci 2020; 21:ijms21249635. [PMID: 33348817 PMCID: PMC7767033 DOI: 10.3390/ijms21249635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/03/2023] Open
Abstract
Most rheumatic diseases, including rheumatoid arthritis (RA), are characterized by immune disorders that affect antibody activity. In the present study, using Dot blot and ELISA assay, we showed that patients with rheumatic disease produced significantly more antibodies against lipopolysaccharide (LPS) P. mirabilis O3 compared to healthy donors (p < 0.05), and affinity purified antibodies against LPS O3 may cross-react with collagen type I. It was demonstrated that purified of antibodies isolated from RA patients sera, reacted stronger with the collagen than healthy donors (p = 0.015), and cross-reaction was correlated with level of anti-citrullinated peptide antibodies (r = 0.7, p = 0.003). Moreover, using six different lipopolysaccharides were demonstrated the significant correlations in sera reactivity among lysine-containing lipopolysaccharides observed in patients’ sera (p < 0.05). Using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) it was shown that unique wavenumbers of sera spectra correlate with reactivity with lipopolysaccharides allowing distinguish patients from healthy blood donors. Antibodies adsorption by synthetic antigens shows that in patients’ group anti-LPS O3 antibodies can be adsorbed by both amides of galacturonic acid and lysine or threonine, which suggests less specificity of antibodies binding with non-carbohydrate LPS component. The observed correlations suggest that non-carbohydrate components of LPS may be an important epitope for less specific anti-LPS antibodies, which might lead to cross-reactions and affect disease development.
Collapse
Affiliation(s)
- Katarzyna Durlik-Popińska
- Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski University, 25-369 Kielce, Poland; (P.Ż.); (Ł.L.); (W.K.)
- Correspondence:
| | - Paulina Żarnowiec
- Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski University, 25-369 Kielce, Poland; (P.Ż.); (Ł.L.); (W.K.)
| | - Łukasz Lechowicz
- Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski University, 25-369 Kielce, Poland; (P.Ż.); (Ł.L.); (W.K.)
| | - Józef Gawęda
- Rheumatology Clinic ARTIMED, 25-022 Kielce, Poland;
| | - Wiesław Kaca
- Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski University, 25-369 Kielce, Poland; (P.Ż.); (Ł.L.); (W.K.)
| |
Collapse
|
5
|
Browning SR, Browning BL. Probabilistic Estimation of Identity by Descent Segment Endpoints and Detection of Recent Selection. Am J Hum Genet 2020; 107:895-910. [PMID: 33053335 PMCID: PMC7553009 DOI: 10.1016/j.ajhg.2020.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
Most methods for fast detection of identity by descent (IBD) segments report identity by state segments without any quantification of the uncertainty in the endpoints and lengths of the IBD segments. We present a method for determining the posterior probability distribution of IBD segment endpoints. Our approach accounts for genotype errors, recent mutations, and gene conversions which disrupt DNA sequence identity within IBD segments, and it can be applied to large cohorts with whole-genome sequence or SNP array data. We find that our method's estimates of uncertainty are well calibrated for homogeneous samples. We quantify endpoint uncertainty for 77.7 billion IBD segments from 408,883 individuals of white British ancestry in the UK Biobank, and we use these IBD segments to find regions showing evidence of recent natural selection. We show that many spurious selection signals are eliminated by the use of unbiased estimates of IBD segment endpoints and a pedigree-based genetic map. Eleven of the twelve regions with the greatest evidence for recent selection in our scan have been identified as selected in previous analyses using different approaches. Our computationally efficient method for quantifying IBD segment endpoint uncertainty is implemented in the open source ibd-ends software package.
Collapse
Affiliation(s)
- Sharon R Browning
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA.
| | - Brian L Browning
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA; Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Lanata CM, Blazer A, Criswell LA. The Contribution of Genetics and Epigenetics to Our Understanding of Health Disparities in Rheumatic Diseases. Rheum Dis Clin North Am 2020; 47:65-81. [PMID: 34042055 DOI: 10.1016/j.rdc.2020.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Socioeconomic determinants of health are associated with worse outcomes in the rheumatic diseases and contribute significantly to health disparities. However, genetic and epigenetic risk factors may affect different populations disproportionally and further exacerbate health disparities. We discuss the role of genetics and epigenetics to the health disparities observed in rheumatic diseases. We review concepts of population genetics and natural selection, current genome-wide genetic and epigenetic studies of several autoimmune diseases, and environmental exposures associated with disease risk in different populations. To understand how genomics influence health disparities in the rheumatic diseases, further studies in different populations worldwide are needed.
Collapse
Affiliation(s)
- Cristina M Lanata
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco, 513 Parnassus Avenue, MSB S865, San Francisco, CA, USA
| | - Ashira Blazer
- Department of Medicine, Division of Rheumatology, NYU Langone Health, 550 1st Avenue, MSB 606, New York, NY 10029, USA
| | - Lindsey A Criswell
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco, 513 Parnassus Avenue, MSB S864, San Francisco, CA, USA.
| |
Collapse
|
7
|
Merkhofer RM, Klein BS. Advances in Understanding Human Genetic Variations That Influence Innate Immunity to Fungi. Front Cell Infect Microbiol 2020; 10:69. [PMID: 32185141 PMCID: PMC7058545 DOI: 10.3389/fcimb.2020.00069] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/12/2020] [Indexed: 12/30/2022] Open
Abstract
Fungi are ubiquitous. Yet, despite our frequent exposure to commensal fungi of the normal mammalian microbiota and environmental fungi, serious, systemic fungal infections are rare in the general population. Few, if any, fungi are obligate pathogens that rely on infection of mammalian hosts to complete their lifecycle; however, many fungal species are able to cause disease under select conditions. The distinction between fungal saprophyte, commensal, and pathogen is artificial and heavily determined by the ability of an individual host's immune system to limit infection. Dramatic examples of commensal fungi acting as opportunistic pathogens are seen in hosts that are immune compromised due to congenital or acquired immune deficiency. Genetic variants that lead to immunological susceptibility to fungi have long been sought and recognized. Decreased myeloperoxidase activity in neutrophils was first reported as a mechanism for susceptibility to Candida infection in 1969. The ability to detect genetic variants and mutations that lead to rare or subtle susceptibilities has improved with techniques such as single nucleotide polymorphism (SNP) microarrays, whole exome sequencing (WES), and whole genome sequencing (WGS). Still, these approaches have been limited by logistical considerations and cost, and they have been applied primarily to Mendelian impairments in anti-fungal responses. For example, loss-of-function mutations in CARD9 were discovered by studying an extended family with a history of fungal infection. While discovery of such mutations furthers the understanding of human antifungal immunity, major Mendelian susceptibility loci are unlikely to explain genetic disparities in the rate or severity of fungal infection on the population level. Recent work using unbiased techniques has revealed, for example, polygenic mechanisms contributing to candidiasis. Understanding the genetic underpinnings of susceptibility to fungal infections will be a powerful tool in the age of personalized medicine. Future application of this knowledge may enable targeted health interventions for susceptible individuals, and guide clinical decision making based on a patient's individual susceptibility profile.
Collapse
Affiliation(s)
- Richard M Merkhofer
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Bruce S Klein
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
8
|
Frew JW. The Hygiene Hypothesis, Old Friends, and New Genes. Front Immunol 2019; 10:388. [PMID: 30894862 PMCID: PMC6414441 DOI: 10.3389/fimmu.2019.00388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- John W Frew
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, United States
| |
Collapse
|
9
|
Heme oxygenase-1 as a potential therapeutic target in rheumatic diseases. Life Sci 2018; 218:205-212. [PMID: 30580021 DOI: 10.1016/j.lfs.2018.12.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Heme oxygenase-1 (HO-1), a cellular stress protein, serves a vital metabolic function as the rate-limiting enzyme in the degradation of heme to generate carbon monoxide (CO), iron, and biliverdin (BR). HO-1 may function as one of the most momentous factors of cell adaptation to oxidase stress, as well as a regulator of inflammatory signaling programs through the generation of its biologically active end products. Intensive investigation is now focusing on the potential function of HO-1 in inflammatory disorders, among which rheumatic diseases are one of the principal issues. METHODS "Heme oxygenase-1", "rheumatic diseases"; "lupus", "rheumatic arthritis", "osteoarthritis" and "oxidative stress" were used as key words for searching in Pubmed and Google scholar database. RESULTS Collected information from the related articles revealed the important role of pathogenesis and therapeutic potential of HO-1 in rheumatic diseases. Conclusions and discussions HO-1 has potential as a target for the treatment of rheumatic diseases due to its characteristic anti-inflammatory and anti-oxidative role. However, it is essential to monitor the HO-1 expression during particular stage of the disorders, and levels of HO-1 in different tissues and organs should be further confirmed in order to correlate it with clinical symptoms and other hallmarks of rheumatic diseases.
Collapse
|
10
|
Frew JW. Complement, hidradenitis suppurativa and pathogen-driven positive selection. Br J Dermatol 2018; 180:685-686. [PMID: 30430538 DOI: 10.1111/bjd.17426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- J W Frew
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, U.S.A
| |
Collapse
|