1
|
Wujcicki Ł, Mańdok T, Budzińska-Lipka W, Pawlusińska K, Szozda N, Dudek G, Piotrowski K, Turczyn R, Krzywiecki M, Kazek-Kęsik A, Kluczka J. Cerium(IV) chitosan-based hydrogel composite for efficient adsorptive removal of phosphates(V) from aqueous solutions. Sci Rep 2023; 13:13049. [PMID: 37567895 PMCID: PMC10421956 DOI: 10.1038/s41598-023-40064-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The excess presence of phosphate(V) ions in the biosphere is one of the most serious problems that negatively affect aqueous biocenosis. Thus, phosphates(V) separation is considered to be important for sustainable development. In the presented study, an original cerium(IV)-modified chitosan-based hydrogel (Ce-CTS) was developed using the chemical co-precipitation method and then used as an adsorbent for efficient removal of phosphate(V) ions from their aqueous solutions. From the scientific point of view, it represents a completely new physicochemical system. It was found that the adsorptive removal of phosphate(V) anions by the Ce-CTS adsorbent exceeded 98% efficiency which is ca. 4-times higher compared with the chitosan-based hydrogel without any modification (non-cross-linked CTS). The best result of the adsorption capacity of phosphates(V) on the Ce-CTS adsorbent, equal to 71.6 mg/g, was a result of adsorption from a solution with an initial phosphate(V) concentration 9.76 mg/dm3 and pH 7, an adsorbent dose of 1 g/dm3, temperature 20 °C. The equilibrium interphase distribution data for the Ce-CTS adsorbent and aqueous solution of phosphates(V) agreed with the theoretical Redlich-Peterson and Hill adsorption isotherm models. From the kinetic point of view, the pseudo-second-order model explained the phosphates(V) adsorption rate for Ce-CTS adsorbent the best. The specific effect of porous structure of adsorbent influencing the diffusional mass transfer resistances was identified using Weber-Morris kinetic model. The thermodynamic study showed that the process was exothermic and the adsorption ran spontaneously. Modification of CTS with cerium(IV) resulted in the significant enhancement of the chitosan properties towards both physical adsorption (an increase of the point of zero charge of adsorbent), and chemical adsorption (through the presence of Ce(IV) that demonstrates a chemical affinity for phosphate(V) anions). The elaborated and experimentally verified highly effective adsorbent can be successfully applied to uptake phosphates(V) from aqueous systems. The Ce-CTS adsorbent is stable in the conditions of the adsorption process, no changes in the adsorbent structure or leaching of the inorganic filling were observed.
Collapse
Affiliation(s)
- Łukasz Wujcicki
- Faculty of Chemistry, Silesian University of Technology, Ks. M. Strzody 9, 44-100, Gliwice, Poland
| | - Tomasz Mańdok
- Faculty of Chemistry, Silesian University of Technology, Ks. M. Strzody 9, 44-100, Gliwice, Poland
| | - Wiktoria Budzińska-Lipka
- Faculty of Chemistry, Silesian University of Technology, Ks. M. Strzody 9, 44-100, Gliwice, Poland
| | - Karolina Pawlusińska
- Faculty of Chemistry, Silesian University of Technology, Ks. M. Strzody 9, 44-100, Gliwice, Poland
| | - Natalia Szozda
- Faculty of Chemistry, Silesian University of Technology, Ks. M. Strzody 9, 44-100, Gliwice, Poland
| | - Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Ks. M. Strzody 9, 44-100, Gliwice, Poland
| | - Krzysztof Piotrowski
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, Ks. M. Strzody 7, 44-100, Gliwice, Poland
| | - Roman Turczyn
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Ks. M. Strzody 9, 44-100, Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland
| | - Maciej Krzywiecki
- Institute of Physics - Centre for Science and Education, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland
| | - Alicja Kazek-Kęsik
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland
| | - Joanna Kluczka
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland.
| |
Collapse
|
2
|
Humic Acid-Modified Magnetite Nanoparticles for Removing [AuCl4]− in Aqueous Solutions. JURNAL KIMIA SAINS DAN APLIKASI 2022. [DOI: 10.14710/jksa.25.1.27-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Humic acid-modified magnetite nanoparticle (MnP-HA) has been synthesized using the co-precipitation method and applied for removal of [AuCl4]−. Modifying of MnP-HA was prepared with the mass ratio of MnP-HA=10:1 and 10:3. The HA was extracted from peat soil of Sambutan Village, East Kalimantan, Indonesia, by the recommended procedure of the International Humic Substances Society (IHSS). The saturation magnetization of MnP-HA was decreased compared to unmodified MnP. The interaction between MnP and HA was occurred due to the chemical bond between Fe from MnP with the carboxylic group from HA. The coating HA on the surface of MnP unchanged the formation of the crystal structure of MnP and increased the particle size. The optimum removal of [AuCl4]− on MnP and MnP-HA materials was optimum at pH 3.0. The Langmuir isotherm model with sorption capacity was 0.23, 4.85, and 4.65 mol g–1 for MnP, MnP-HA=10:1, and 10:3, respectively. Using a pseudo-second-order equation, the degradation of the kinetics model of [AuCl4]− on MnP, MnP-HA=10:1 and 10:3 with adsorption rate constant (k) were 0.02, 0.07, and 0.06 g.mol min–1.
Collapse
|
4
|
Yang T, Hodson ME. Investigating the potential of synthetic humic-like acid to remove metal ions from contaminated water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1036-1046. [PMID: 29710559 DOI: 10.1016/j.scitotenv.2018.04.176] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Humic acid can effectively bind metals and is a promising adsorbent for remediation technologies. Our studies initially focussed on Cu2+ as a common aqueous contaminant. Previous studies indicate that carboxylic groups dominate Cu2+ binding to humic acid. We prepared a synthetic humic-like acid (SHLA) with a high COOH content using catechol (0.25 M) and glycine (0.25 M) with a MnO2 catalyst (2.5% w/v) at pH = 8 and 25 °C and investigated the adsorption behaviour of Cu2+ onto it. The SHLA exhibited a range of adsorption efficiencies (27%-99%) for Cu2+ depending on reaction conditions. A pseudo-second-order kinetic model provided the best fit to the experimental data (R2 = 0.9995-0.9999, p ≤ 0.0001), indicating that chemisorption was most likely the rate-limiting step for adsorption. The equilibrium adsorption data showed good fits to both the Langmuir (R2 = 0.9928-0.9982, p ≤ 0.0001) and Freundlich (R2 = 0.9497-0.9667, p ≤ 0.0001) models. The maximum adsorption capacity (qm) of SHLA increased from 46.44 mg/g to 58.78 mg/g with increasing temperature from 25 °C to 45 °C. Thermodynamic parameters (ΔG0 = 2.50-3.69 kJ/mol; ΔS0 = 0.06 kJ/(mol·K); ΔH0 = 15.23 kJ/mol) and values of RL (0.0142-0.3711) and n (3.264-3.527) show that the adsorption of Cu2+ onto SHLA was favourable, spontaneous and endothermic in nature. Over six adsorption/desorption cycles using 0.5 M HCl for the desorption phase, there was a 10% decrease of the adsorption capacity. A final experiment using a multi-metal solution indicated adsorption efficiencies of up to 84.3-98.3% for Cu, 86.6-98.8% for Pb, 30.4-82.9% for Cr, 13.8-77.4% for Ni, 9.2-62.3% for Cd, 8.6-51.9% for Zn and 4.6-42.1% for Co. Overall, SHLA shows great potential as an adsorbent to remove metals from water and wastewater.
Collapse
Affiliation(s)
- Ting Yang
- Environment Department, University of York, Heslington, Wentworth Way, York YO10 5NG, United Kingdom.
| | - Mark E Hodson
- Environment Department, University of York, Heslington, Wentworth Way, York YO10 5NG, United Kingdom
| |
Collapse
|
5
|
Jóźwiak T, Filipkowska U, Szymczyk P, Kuczajowska-Zadrożna M, Mielcarek A. The use of cross-linked chitosan beads for nutrients (nitrate and orthophosphate) removal from a mixture of P-PO4, N-NO2 and N-NO3. Int J Biol Macromol 2017; 104:1280-1293. [DOI: 10.1016/j.ijbiomac.2017.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/19/2017] [Accepted: 07/02/2017] [Indexed: 11/15/2022]
|
6
|
Arnnok P, Patdhanagul N, Burakham R. Dispersive solid-phase extraction using polyaniline-modified zeolite NaY as a new sorbent for multiresidue analysis of pesticides in food and environmental samples. Talanta 2017; 164:651-661. [DOI: 10.1016/j.talanta.2016.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
|