1
|
Bergdahl GE, Hedström M, Mattiasson B. Capacitive Saccharide Sensor Based on Immobilized Phenylboronic Acid with Diol Specificity. Appl Biochem Biotechnol 2019; 188:124-137. [PMID: 30370445 PMCID: PMC6509085 DOI: 10.1007/s12010-018-2911-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/19/2018] [Indexed: 01/12/2023]
Abstract
A capacitive sensor for saccharide detection is described in this study. The detection is based on selective interaction between diols and aminophenylboronic acid (APBA) immobilized on a gold electrode. Glucose, fructose, and dextran (MW: 40 kDa) were tested with the system over wide concentration ranges (1.0 x 10-8 M - 1.0 x 10-3 M for glucose, 1.0 x 10-8 M - 1.0 x 10-2 M for fructose and 1.0 x 10-10 M - 1.0 x 10-5 M for dextran). The limits of detection (LODs) were 0.8 nM for glucose, 0.6 nM for fructose, and 13 pM for dextran. These data were comparable to the others reported previously. In order to demonstrate glycoprotein detection with the same sensor, human immunoglobulin G (IgG) as well as horseradish peroxidase were used as model analytes. The sensor responded to IgG in the concentration range of 1.0 x 10-13 M - 1.0 x 10-7 M with a LOD value of 16 fM. The performance of the assay of peroxidase was compared to a spectrophotometric assay by determining the enzymatic activity of a captured analyte. The results showed that the method might be useful for label-free, fast, and sensitive detection of saccharides as well as glycoproteins over a wide concentration range.
Collapse
Affiliation(s)
- Gizem Ertürk Bergdahl
- CapSenze Biosystems AB, Scheelevägen 22, 22363 Lund, Sweden
- Department of Biotechnology, Kemicentum, Lund University, Sölvegatan 39A, 22100 Lund, Sweden
- Department of Clinical Sciences, Lund University, Tornavägen 10, 22184 Lund, Sweden
| | - Martin Hedström
- CapSenze Biosystems AB, Scheelevägen 22, 22363 Lund, Sweden
- Department of Biotechnology, Kemicentum, Lund University, Sölvegatan 39A, 22100 Lund, Sweden
| | - Bo Mattiasson
- CapSenze Biosystems AB, Scheelevägen 22, 22363 Lund, Sweden
- Department of Biotechnology, Kemicentum, Lund University, Sölvegatan 39A, 22100 Lund, Sweden
| |
Collapse
|
2
|
Andreev EA, Komkova MA, Nikitina VN, Karyakin AA. Reagentless Impedimetric Sensors Based on Aminophenylboronic Acids. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Chamjangali MA, Reskety AA, Goudarzi N, Bagherian G, Momeni AH. Construction and characterization of GCE/MWCNT/Au-NP as a new impedimetric and voltammetric sensor for determination of gemfibrozil in pharmaceutical and biological samples. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/aaed06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
Nikitina VN, Zaryanov NV, Karyakina EE, Karyakin AA. Electropolymerization of 2-aminophenylboronic acid and the use of the resulting polymer for determination of sugars and oxyacids. RUSS J ELECTROCHEM+ 2017. [DOI: 10.1134/s1023193517030120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Dervisevic M, Senel M, Cevik E. Novel impedimetric dopamine biosensor based on boronic acid functional polythiophene modified electrodes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:641-649. [DOI: 10.1016/j.msec.2016.11.127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/21/2016] [Accepted: 11/27/2016] [Indexed: 01/23/2023]
|
6
|
Fabrication of Photomagnetic Carbon Surfaces via Redox Assembly. JOURNAL OF NANOTECHNOLOGY 2017. [DOI: 10.1155/2017/6058216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
3-Aminophenylboronic acid (APBA) and the complex Ru(bpy)2(phendione)2+ (bpy = 2,2′-bipyridine, phendione = 1,10-phenanthroline-5,6-dione) were found to be useful building blocks for preparing photomagnetic carbon surfaces. Scanning tunneling microscopy (STM) showed that when APBA was diazotized in acidic sodium nitrite solutions and cathodically reduced with highly ordered pyrolytic graphite (HOPG) electrodes, nanoscale films formed on the electrodes. The resulting HOPG had strong affinities for phendione and Ru(bpy)2(phendione)2+ as the electrodes were biased in the presence of them, respectively, with voltages more negative than the cathodic peak potentials for phendione/phendiol and Ru(bpy)2(phendione)2+/Ru(bpy)2(phendiol)2+ (phendiol = 1,10-phenanthroline-5,6-diol). However, if APBA was excluded, the affinities did not exist. Boronate ester formation featured prominently in these intermolecular interactions. The average increments in the HOPG surface roughness contributed by APBA and Ru(bpy)2(phendione)2+ were roughly 1 : 2, suggesting that the reaction stoichiometry between APBA and Ru(bpy)2(phendione)2+ be 1 : 1. Ru(bpy)2(phendione)2+ could also be grafted to carbon nanotubes (CNTs) under conditions similar to those for the HOPG using ascorbate as sacrificial donor. The resulting CNTs and HOPG exhibited photomagnetism when exposed to the 473 nm light. The ruthenium complex was shown to be a room-temperature photomagnetism precursor, and APBA was shown to be an effective molecular bridge for the complex and carbon substrates.
Collapse
|
7
|
Gumus OY, Ozkan S, Unal HI. A Comparative Study on Electrokinetic Properties of Boronic Acid Derivative Polymers in Aqueous and Nonaqueous Media. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201500524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Omer Yunus Gumus
- Department of Chemistry; Faculty of Arts and Science; Nevsehir Haci Bektas Veli University; Nevsehir 50300 Turkey
| | - Seyma Ozkan
- Smart Materials Research Laboratory; Department of Chemistry; Faculty of Science; University of Gazi; Ankara 06560 Turkey
| | - Halil Ibrahim Unal
- Smart Materials Research Laboratory; Department of Chemistry; Faculty of Science; University of Gazi; Ankara 06560 Turkey
| |
Collapse
|
8
|
Komkova MA, Andreyev EA, Nikitina VN, Krupenin VA, Presnov DE, Karyakina EE, Yatsimirsky AK, Karyakin AA. Novel Reagentless Label-Free Detection Principle for Affinity Interactions Resulted in Conductivity Increase of Conducting Polymer. ELECTROANAL 2015. [DOI: 10.1002/elan.201500121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Nikitina VN, Kochetkov IR, Karyakina EE, Yatsimirsky AK, Karyakin AA. Tuning electropolymerization of boronate-substituted anilines: Fluoride-free synthesis of the advanced affinity transducer. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2014.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
10
|
Andreyev EA, Komkova MA, Nikitina VN, Zaryanov NV, Voronin OG, Karyakina EE, Yatsimirsky AK, Karyakin AA. Reagentless polyol detection by conductivity increase in the course of self-doping of boronate-substituted polyaniline. Anal Chem 2014; 86:11690-5. [PMID: 25363870 DOI: 10.1021/ac5029819] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report on the novel reagentless and label-free detection principle based on electroactive (conducting) polymers considering sensors for polyols, particularly, saccharides and hydroxy acids. Unlike the majority of impedimetric and conductometric (bio)sensors, which specific and unspecific signals are directed in the same way (resistance increase), making doubtful their real applications, the response of the reported system results in resistance decrease, which is directed oppositely to the background. The mechanism of the resistance decrease is the polyaniline self-doping, i.e., as an alternative to proton doping, an appearance of the negatively charged aromatic ring substituents in polymer chain. Negative charge "freezing" at the boron atom is indeed a result of complex formation with di- and polyols, specific binding. Changes in Raman spectra of boronate-substituted polyaniline after addition of glucose are similar to those caused by proton doping of the polymer. Thermodynamic data on interaction of the electropolymerized 3-aminophenylboronic acid with saccharides and hydroxy acids also confirm that the observed resistance decrease is due to polymer interaction with polyols. The first reported conductivity increase as a specific signal opens new horizons for reagentless affinity sensors, allowing the discrimination of specific affinity bindings from nonspecific interactions.
Collapse
Affiliation(s)
- Egor A Andreyev
- Chemistry Faculty and LG-MSU Joint Laboratory, M.V. Lomonosov Moscow State University , 119991, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lacina K, Skládal P, James TD. Boronic acids for sensing and other applications - a mini-review of papers published in 2013. Chem Cent J 2014; 8:60. [PMID: 25371705 PMCID: PMC4218984 DOI: 10.1186/s13065-014-0060-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/06/2014] [Indexed: 12/20/2022] Open
Abstract
Boronic acids are increasingly utilised in diverse areas of research. Including the interactions of boronic acids with diols and strong Lewis bases as fluoride or cyanide anions, which leads to their utility in various sensing applications. The sensing applications can be homogeneous assays or heterogeneous detection. Detection can be at the interface of the sensing material or within the bulk sample. Furthermore, the key interaction of boronic acids with diols allows utilisation in various areas ranging from biological labelling, protein manipulation and modification, separation and the development of therapeutics. All the above uses and applications are covered by this mini-review of papers published during 2013.
Collapse
Affiliation(s)
- Karel Lacina
- />CEITEC, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- />Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY UK
| | - Petr Skládal
- />CEITEC, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- />Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Tony D James
- />Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY UK
| |
Collapse
|
12
|
Bahadır EB, Sezgintürk MK. A review on impedimetric biosensors. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:248-62. [DOI: 10.3109/21691401.2014.942456] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Cegłowski M, Gierczyk B, Schroeder G. Poly(methyl vinyl ether-alt-maleic anhydride) functionalized with 3-aminophenylboronic acid: A new boronic acid polymer for sensing diols in neutral water. J Appl Polym Sci 2014. [DOI: 10.1002/app.40778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michał Cegłowski
- Department of Supramolecular Chemistry; Faculty of Chemistry; Adam Mickiewicz University in Poznan; Umultowska 89b 61-614 Poznań Poland
| | - Błażej Gierczyk
- Department of Supramolecular Chemistry; Faculty of Chemistry; Adam Mickiewicz University in Poznan; Umultowska 89b 61-614 Poznań Poland
| | - Grzegorz Schroeder
- Department of Supramolecular Chemistry; Faculty of Chemistry; Adam Mickiewicz University in Poznan; Umultowska 89b 61-614 Poznań Poland
| |
Collapse
|
14
|
Pandikumar A, Soon How GT, See TP, Omar FS, Jayabal S, Kamali KZ, Yusoff N, Jamil A, Ramaraj R, John SA, Lim HN, Huang NM. Graphene and its nanocomposite material based electrochemical sensor platform for dopamine. RSC Adv 2014. [DOI: 10.1039/c4ra13777a] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this review, the recent progress in the electrochemical sensing of dopamine with various graphene and their nanocomposite materials modified electrodes are presented.
Collapse
Affiliation(s)
- Alagarsamy Pandikumar
- Low Dimensional Materials Research Centre
- Department of Physics
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
| | - Gregory Thien Soon How
- Low Dimensional Materials Research Centre
- Department of Physics
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
| | - Teo Peik See
- Low Dimensional Materials Research Centre
- Department of Physics
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
| | - Fatin Saiha Omar
- Low Dimensional Materials Research Centre
- Department of Physics
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
| | - Subramaniam Jayabal
- Low Dimensional Materials Research Centre
- Department of Physics
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
| | - Khosro Zangeneh Kamali
- Low Dimensional Materials Research Centre
- Department of Physics
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
| | - Norazriena Yusoff
- Low Dimensional Materials Research Centre
- Department of Physics
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
| | - Asilah Jamil
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- 43400 Serdang, Malaysia
| | - Ramasamy Ramaraj
- School of Chemistry
- Centre for Photoelectrochemistry
- Madurai Kamaraj University
- Madurai-625021, India
| | - Swamidoss Abraham John
- Centre for Nanoscience & Nanotechnology
- Department of Chemistry
- Gandhigram Rural University
- Gandhigram-624302, India
| | - Hong Ngee Lim
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- 43400 Serdang, Malaysia
- Functional Device Laboratory
| | - Nay Ming Huang
- Low Dimensional Materials Research Centre
- Department of Physics
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
| |
Collapse
|