1
|
Shokri Z, Seidi F, Karami S, Li C, Saeb MR, Xiao H. Laccase immobilization onto natural polysaccharides for biosensing and biodegradation. Carbohydr Polym 2021; 262:117963. [DOI: 10.1016/j.carbpol.2021.117963] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/21/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022]
|
2
|
Ghodake GS, Yang J, Shinde SS, Mistry BM, Kim DY, Sung JS, Kadam AA. Paper waste extracted α-cellulose fibers super-magnetized and chitosan-functionalized for covalent laccase immobilization. BIORESOURCE TECHNOLOGY 2018; 261:420-427. [PMID: 29698891 DOI: 10.1016/j.biortech.2018.04.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
Enormous disposal of paper wastes (PW) causing number of environmental problems. PW is efficiently used to extract multifunctional α-cellulose fibers (αCFs). Thus, αCFs extraction from PW, and functionalization with Fe3O4 and chitosan were successfully performed for immobilization of laccase. Therefore, in this investigation, PW extracted αCFs were tuned with supermagnetic Fe3O4 (M) and functionalized with chitosan (CTA) (M-PW-αCF-CTA). Furthermore, M-PW-αCF-CTA was glutaraldehyde cross-linked for covalent laccase immobilization. The synthesized materials were characterized by FT-IR, TGA, FE-SEM, FE-HR-TEM and VSM analyzes. M-PW-αCF-CTA exhibited magnetic saturation value of 14.72 emu/g. Laccase immobilized on M-PW-αCF-CTA (M-PW-αCF-CTA-Lac) gave 92% of activity recovery and loading capacity of 73.30 mg/g. M-PW-αCF-CTA-Lac showed excellent pH, temperature, and storage stabilities with the exceptional reusability potential. Moreover, M-PW-αCF-CTA-Lac was applied for repeated removal of carcinogenic Direct Red 28 (DR28). Therefore, M-PW-αCF-CTA-Lac is green and economical biocatalyst with extraordinary separation potential can be enforced for environmental pollutants reclamation.
Collapse
Affiliation(s)
- Gajanan S Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Biomedical Campus, Ilsandong-gu, 10326 Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jiwook Yang
- Department of Biological and Environmental Science, Dongguk University-Seoul, Biomedical Campus, Ilsandong-gu, 10326 Goyang-si, Gyeonggi-do, Republic of Korea
| | - Surendra S Shinde
- Department of Biological and Environmental Science, Dongguk University-Seoul, Biomedical Campus, Ilsandong-gu, 10326 Goyang-si, Gyeonggi-do, Republic of Korea
| | - Bhupendra M Mistry
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-820, Republic of Korea
| | - Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, Biomedical Campus, Ilsandong-gu, 10326 Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Sciences, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Avinash A Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Biomedi Campus, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
3
|
Silva FBD, Morais Júnior WGD, Silva CVD, Vieira AT, Batista ACF, Faria AMD, Assunção RMN. Preparation and Characterization of Cellulose Triacetate as Support for Lecitase Ultra Immobilization. Molecules 2017; 22:molecules22111930. [PMID: 29144385 PMCID: PMC6150194 DOI: 10.3390/molecules22111930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 11/16/2022] Open
Abstract
The use of polymers as supports for enzyme immobilization is a strategy that enables to remove the enzymes from a chemical reaction and improve their efficiency in catalytic processes. In this work, cellulose triacetate (CTA) was used for physical adsorption of phospholipase Lecitase ultra (LU). CTA is more hydrophobic than cellulose, shows good performance in the lipases immobilization being a good candidate for immobilization of phospholipases. We investigated the immobilization of LU in CTA, the stability of the immobilized enzyme (CTA-LU) and the performance of CTA-LU using soybean oil as a substrate. LU was efficiently immobilized in CTA reaching 97.1% in 60 min of contact with an enzymatic activity of 975.8 U·g-1. The CTA-LU system presents good thermal stability, being superior of the free enzyme and increase of the catalytic activity in the whole range of pH values. The difference observed for immobilized enzyme compared to free one occurs because of the interaction between the enzyme and the polymer, which stabilizes the enzyme. The CTA-LU system was used in the transesterification of soybean oil with methanol, with the production of fatty acid methyl esters. The results showed that CTA-LU is a promising system for enzymatic reactions.
Collapse
Affiliation(s)
- Francielle Batista da Silva
- Laboratory of Polymers Recycling, Chemistry Institute, Federal University of Uberlândia, Uberlândia 38408-144, MG, Brazil.
| | | | - Cleuzilene Vieira da Silva
- Laboratory of Polymers Recycling, Chemistry Institute, Federal University of Uberlândia, Uberlândia 38408-144, MG, Brazil.
| | - Andressa Tironi Vieira
- Faculty of Integrated Sciences-FACIP, Federal University of Uberlândia, Ituiutaba 38304-402, MG, Brazil.
| | | | - Anízio Márcio de Faria
- Faculty of Integrated Sciences-FACIP, Federal University of Uberlândia, Ituiutaba 38304-402, MG, Brazil.
| | | |
Collapse
|