1
|
Fila D, Kołodyńska D. Facile synthesis of eco-friendly alginate-chitosan bio-adsorbent for critical raw materials adsorption: A comprehensive study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121609. [PMID: 38943744 DOI: 10.1016/j.jenvman.2024.121609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Sustainable management of critical raw materials is of paramount importance to ensure a steady supply and reduce environmental impact. The application of newly synthesized and environmentally friendly ALG@CS material as a bio-adsorbent for the effective rare earth elements removal from aqueous solution has been presented. The synthesized material underwent FTIR, XPS, EDX, and SEM analysis to determine its suitability for metal uptake. To evaluate the adsorption capacity of ALG@CS for rare earth elements several factors were taken into consideration. These factors included alginate:chitosan ratios, bead size, pH level, composite mass, interaction time, metal ion concentration, and temperature, being all varied during the batch mode evaluation process. Under the optimal conditions, the maximum adsorption capacities were found to be 145.90 mg La(III)/g, 168.44 mg Ce(III)/g, 132.51 mg Pr(III)/g, 128.40 mg Nd(III)/g, 154.36 mg Sm(III)/g, and 165.10 mg Ho(III)/g. The equilibrium data fits well with non-linear three-parameter Sips and Redlich-Peterson isotherm models. The PSO model finds the highest process suitability. The synthesized ALG@CS bio-adsorbent showed excellent regenerative capacity in ten cycles, making it a suitable adsorbent for rare earth elements uptake. The unique bio-adsorbents combination allows for efficient critical raw materials adsorption providing a promising solution for their recovery and recycling.
Collapse
Affiliation(s)
- Dominika Fila
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031, Lublin, Poland.
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031, Lublin, Poland
| |
Collapse
|
2
|
Ghiorghita CA, Lazar MM, Platon IV, Humelnicu D, Doroftei F, Dinu MV. Feather-weight cryostructured thiourea-chitosan aerogels for highly efficient removal of heavy metal ions and bacterial pathogens. Int J Biol Macromol 2023; 235:123910. [PMID: 36870629 DOI: 10.1016/j.ijbiomac.2023.123910] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Designing of economically feasible and recyclable polysaccharide-based materials with thiourea functional groups for removal of specific metal ions such as Ag(I), Au(I), Pb(II) or Hg(II) remains a major challenge for environmental applications. Here, we introduce ultra-lightweight thiourea-chitosan (CSTU) aerogels engineered by combining successive freeze-thawing cycles with covalent formaldehyde-mediated cross-linking and lyophilization. All aerogels exhibited outstanding low densities (0.0021-0.0103 g/cm3) and remarkable high specific surface areas (416.64-447.26 m2/g), outperforming the common polysaccharide-based aerogels. Benefitting from their superior structural features (honeycomb interconnected pores and high porosity), CSTU aerogels demonstrate fast sorption rates and excellent performance in sorption of heavy metal ions from highly-concentrated single or binary-component mixtures (1.11 mmol Ag (I)/g and 0.48 mmol Pb(II)/g). A remarkable recycling stability was observed after five sorption-desorption-regeneration cycles when the removal efficiency was up to 80 %. These results support the high potential of CSTU aerogels in the treatment of metal-containing wastewater. Moreover, the Ag(I)-loaded CSTU aerogels exhibited excellent antimicrobial properties against Escherichia coli and Staphylococcus aureus bacterial strains, the killing rate being around 100 %. This data points towards the potential application of developed aerogels in circular economy, by employing the spent Ag(I)-loaded aerogels in the biological decontamination of waters.
Collapse
Affiliation(s)
- Claudiu-Augustin Ghiorghita
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania.
| | - Maria Marinela Lazar
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania
| | - Ioana-Victoria Platon
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania
| | - Doina Humelnicu
- Faculty of Chemistry, "Alexandru Ioan Cuza" University of Iasi, Carol I Blvd. 11, 700506, Iasi, Romania
| | - Florica Doroftei
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania
| | - Maria Valentina Dinu
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania.
| |
Collapse
|
3
|
Recovery of Heavy Metal Ions Using Magnetic Glycine-Modified Chitosan—Application to Aqueous Solutions and Tailing Leachate. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188377] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The necessity of decontaminating effluents for the dual purpose of environmental beneficiation and valorization of low-grade resources is driving the development of new sorbents. The functionalization of biopolymers is a promising strategy for improving sorption performance. Incorporating magnetic micro-particles offers an opportunity for the facilitated recovery of spent micron-size sorbent. Combining magnetic facilities and biopolymer functionalization represents a winning strategy. Magnetic glycine-grafted chitosan (G@MChs) was synthesized for the sorption of Ni(II), Zn(II), and Hg(II) before being applied to the removal of hazardous and strategic metals from tailing leachates. The sorbent was characterized using Fourier transform infrared spectroscopy and scanning electron microscopy, before and after metal sorption. The acid–base properties of functionalized sorbent were also determined (pHPZC). Uptake kinetics were studied in mono- and multi-component solutions using different equations for kinetic modeling at optimized pH (i.e., pH0: 5.5). Langmuir and Sips equations were applied to model sorption isotherms in single-component solutions. In addition, sorption isotherms in multi-component solutions were used to evaluate the preference for selected metals. Maximum sorption capacities were 0.35 mmol Hg g−1, 0.47 mmol Zn g−1, and 0.50 mmol Ni g−1. Acidified urea solution (pH 2.7) successfully desorbs metal ions from G@MChs (desorption > 90%). The sorbent was tested for the recovery of hazardous and strategic metal ions from acidic leachates of tailings. This study demonstrates the promising performance of G@MChs for the treatment of complex metal-bearing solutions.
Collapse
|
4
|
Erol K, Arslan Akveran G, Köse K, Ali Köse D. Reducing lactose content of milk from livestock and humans via lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-i-aspartic acid) cryogels. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2020-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Lactase, which can cause lactose intolerance in its deficiency, is a vital enzyme concerning digestion. To overcome lactose intolerance for patients with digestion problem depending of this kind of issue, lactose in food should be removed. In this study, lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-l-aspartic acid), poly(HEMA-MAsp), cryogels were synthesized to reduce the amount of lactose content of milk samples. Occurrence of desired bounds, structural integrity, and surface characteristics were analyzed via Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), scanning electron microscope (SEM), micro computed tomography (CT), and confocal microscope methods. Water retention characteristic were tested in solution with different electrolytic nature. Adsorption parameters were optimized in an aqueous medium. The adsorption performance of imprinted cryogels was studied in milk samples obtained from cow, sheep, goat, buffalo, and from human volunteers at different intervals after birth. Amount of lactose adsorbed in aqueous media and milk sample from humans were 322 (56.7%) and 179.5 (5.94%) mg lactose/g polymer, respectively. Selectivity studies revealed an approximately 8-fold increase in adsorption rate of molecularly imprinted cryogels as compared to that of nonimprinted cryogels. In addition, competitive adsorption was conducted using lactose-imprinted cryogels in aqueous media containing lactose, glucose, and galactose molecules resulting in adsorption rates of 220.56, 57.87, and 61.65 mg biomolecule/g polymer, respectively.
Collapse
Affiliation(s)
- Kadir Erol
- Department of Property Protection and Safety , Osmancık Ö. D. Vocational School, Hitit University , Çorum , Turkey
| | - Gönül Arslan Akveran
- Department of Food Processing , Alaca Avni Çelik Vocational School, Hitit University , Çorum , Turkey
| | - Kazım Köse
- Department of Joint Courses , Hitit University , Çorum 19030 , Turkey
| | - Dursun Ali Köse
- Department of Chemistry , Faculty of Science and Arts, Hitit University , Çorum , Turkey
| |
Collapse
|
5
|
Zheng B, Bai T, Ling J, Sun J. Direct N-substituted N-thiocarboxyanhydride polymerization towards polypeptoids bearing unprotected carboxyl groups. Commun Chem 2020; 3:144. [PMID: 36703352 PMCID: PMC9814353 DOI: 10.1038/s42004-020-00393-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Synthesis of poly(α-amino acid)s bearing carboxyl groups is a critical pathway to prepare biomaterials to simulate functional proteins. The traditional approaches call for carboxyl-protected monomers to prevent degradation of monomers or wrong linkage. In this contribution, we synthesize N-carboxypentyl glycine N-thiocarboxyanhydride (CPG-NTA) and iminodiacetic acid N-thiocarboxyanhydride (IDA-NTA) without protection. Initiated by amines, CPG-NTA directly polymerizes into polyCPG bearing unprotected carboxyl groups with controlled molecular weight (2.8-9.3 kg mol-1) and low dispersities (1.08-1.12). Block and random copolymerizations of CPG-NTA with N-ethyl glycine N-thiocarboxyanhydride (NEG-NTA) demonstrate its versatile construction of complicated polypeptoids. On the contrary, IDA-NTA transforms amines into cyclic IDA dimer-capped species with carboxyl end group in decent yields (>89%) regio-selectively. Density functional theory calculation elucidates that IDA repeating unit is prone to cyclize to be the six-membered ring product with low ΔG. The polymer is a good adhesive reagent to various materials with adhesive strength of 33-229 kPa.
Collapse
Affiliation(s)
- Botuo Zheng
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Innovation Center for Minimally Invasive Techniques and Devices, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
6
|
Bai B, Zhang Z, Zhao X. Enhanced Adsorption of Rare Earth Elements by a Poly(Itaconic Acid)/Magnetite Sepiolite Composite. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1828907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Bing Bai
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Ze Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Xiaowei Zhao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
7
|
Sutirman ZA, Rahim EA, Sanagi MM, Abd Karim KJ, Wan Ibrahim WA. New efficient chitosan derivative for Cu(II) ions removal: Characterization and adsorption performance. Int J Biol Macromol 2020; 153:513-522. [DOI: 10.1016/j.ijbiomac.2020.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/03/2023]
|
8
|
Pereao O, Laatikainen K, Bode-Aluko C, Kochnev I, Fatoba O, Nechaev A, Petrik L. Adsorption of Ce3+ and Nd3+ by diglycolic acid functionalised electrospun polystyrene nanofiber from aqueous solution. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Dragan ES, Dinu MV. Advances in porous chitosan-based composite hydrogels: Synthesis and applications. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104372] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Callura JC, Perkins KM, Baltrus JP, Washburn NR, Dzombak DA, Karamalidis AK. Adsorption kinetics, thermodynamics, and isotherm studies for functionalized lanthanide-chelating resins. J Colloid Interface Sci 2019; 557:465-477. [PMID: 31541916 DOI: 10.1016/j.jcis.2019.08.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/06/2019] [Accepted: 08/26/2019] [Indexed: 01/10/2023]
Abstract
Conventional ion exchange resins are widely utilized to remove metals from aqueous solutions, but their limited selectivity precludes dilute ion extraction. This research investigated the adsorption performance of ligand-functionalized resins towards rare earth elements (REE). Functionalized resin particles were synthesized by grafting different ligands (diethylenetriaminepentaacetic dianhydride (DTPADA), phosphonoacetic acid (PAA), or N,N-bis(phosphonomethyl)glycine (BPG)) onto pre-aminated polymeric adsorbents (diameter ∼ 0.6 mm). Lanthanide uptake trends were evaluated for the functionalized resins using batch adsorption experiments with a mixture of three REEs (Nd, Gd, and Ho at 0.1-1000 mg/L each). Resin physical-chemical properties were determined by measuring their surface area, ligand concentrations, and acidity constants. The aminated supports contained 4.0 mmol/g primary amines, and ligand densities for the functionalized resins were 0.33 mmol/g (PAA), 0.22 mmol/g (BPG), and 0.42 mmol/g (DTPADA). Kinetic studies revealed that the functionalized resins followed pseudo-second order binding kinetics with rates limited by intraparticle diffusion. Capacity estimates for total REE adsorption based on Langmuir qMax were 0.12 mg/g (amine; ≈ 0.77 µmol/g), 5.0 mg/g (PAA; ≈ 32.16 µmol/g), 3.0 mg/g (BPG; ≈ 19.30 µmol/g), and 2.9 mg/g (DTPADA; ≈ 18.65 µmol/g). Attaching ligands to the aminated resins greatly improved their REE binding strength and adsorption efficiency.
Collapse
Affiliation(s)
- Jonathan C Callura
- Carnegie Mellon University, Department of Civil and Environmental Engineering, Pittsburgh, PA, USA
| | - Kedar M Perkins
- Carnegie Mellon University, Department of Chemistry, Pittsburgh, PA, USA
| | - John P Baltrus
- U.S. DOE National Energy Technology Laboratory, Pittsburgh, PA, USA
| | - Newell R Washburn
- Carnegie Mellon University, Department of Chemistry, Pittsburgh, PA, USA
| | - David A Dzombak
- Carnegie Mellon University, Department of Civil and Environmental Engineering, Pittsburgh, PA, USA
| | - Athanasios K Karamalidis
- Carnegie Mellon University, Department of Civil and Environmental Engineering, Pittsburgh, PA, USA; Pennsylvania State University, Department of Energy and Mineral Engineering, University Park, PA 16802, USA.
| |
Collapse
|
11
|
Sayed MA, Helal AI, Abdelwahab SM, Mahmoud HH, Aly HF. Sorption and possible preconcentration of europium and gadolinium ions from aqueous solutions by Mn3O4 nanoparticles. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00906-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
12
|
Sharma RK, Kumar R. Functionalized cellulose with hydroxyethyl methacrylate and glycidyl methacrylate for metal ions and dye adsorption applications. Int J Biol Macromol 2019; 134:704-721. [DOI: 10.1016/j.ijbiomac.2019.05.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022]
|
13
|
Qi X, Liu R, Chen M, Li Z, Qin T, Qian Y, Zhao S, Liu M, Zeng Q, Shen J. Removal of copper ions from water using polysaccharide-constructed hydrogels. Carbohydr Polym 2019; 209:101-110. [DOI: 10.1016/j.carbpol.2019.01.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/03/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023]
|
14
|
Gupta NK, Gupta A, Ramteke P, Sahoo H, Sengupta A. Biosorption-a green method for the preconcentration of rare earth elements (REEs) from waste solutions: A review. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.134] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Sharma RK, Kumar R, Singh AP. Metal ions and organic dyes sorption applications of cellulose grafted with binary vinyl monomers. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.09.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Shao M, Xiu L, Zhang H, Huang J, Gong X. Chitosan/cellulose-based beads for the affinity purification of histidine-tagged proteins. Prep Biochem Biotechnol 2018; 48:352-360. [DOI: 10.1080/10826068.2018.1446154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mingcong Shao
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Lili Xiu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Haijiang Zhang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, P. R. China
| | - Jianying Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Xingwen Gong
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| |
Collapse
|