1
|
Montes-Zavala I, Castrejón-González EO, Rico-Ramírez V, Pérez E, Santamaría-Razo DA, González-Calderón JA. Which is better? Experimental and simulation analyses of the chemical modification of carbon nanotubes to improve their dispersion in water. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2020.1763179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- I. Montes-Zavala
- Departamento de Ingeniería Química, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato, México
| | - E. O. Castrejón-González
- Departamento de Ingeniería Química, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato, México
| | - V. Rico-Ramírez
- Departamento de Ingeniería Química, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato, México
| | - Elias Pérez
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - J. A. González-Calderón
- Cátedras CONACYT-Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
2
|
Heard KW, Bartlam C, Williams CD, Zhang J, Alwattar AA, Little MS, Parry AVS, Porter FM, Vincent MA, Hillier IH, Siperstein FR, Vijayaraghavan A, Yeates SG, Quayle P. Initial Studies Directed toward the Rational Design of Aqueous Graphene Dispersants. ACS OMEGA 2019; 4:1969-1981. [PMID: 31459448 PMCID: PMC6648898 DOI: 10.1021/acsomega.8b03147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 12/14/2018] [Indexed: 05/31/2023]
Abstract
This study presents preliminary experimental data suggesting that sodium 4-(pyrene-1-yl)butane-1-sulfonate (PBSA), 5, an analogue of sodium pyrene-1-sulfonate (PSA), 1, enhances the stability of aqueous reduced graphene oxide (RGO) graphene dispersions. We find that RGO and exfoliated graphene dispersions prepared in the presence of 5 are approximately double the concentration of those made with commercially available PSA, 1. Quantum mechanical and molecular dynamics simulations provide key insights into the behavior of these molecules on the graphene surface. The seemingly obvious introduction of a polar sulfonate head group linked via an appropriate alkyl spacer to the aromatic core results in both more efficient binding of 5 to the graphene surface and more efficient solvation of the polar head group by bulk solvent (water). Overall, this improves the stabilization of the graphene flakes by disfavoring dissociation of the stabilizer from the graphene surface and inhibiting reaggregation by electrostatic and steric repulsion. These insights are currently the subject of further investigations in an attempt to develop a rational approach to the design of more effective dispersing agents for rGO and graphene in aqueous solution.
Collapse
Affiliation(s)
- Kane W.
J. Heard
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Cian Bartlam
- School
of Materials and National Graphene Institute, The University of Manchester, Manchester M13 9PL, U.K.
| | - Christopher D. Williams
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Junru Zhang
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Aula A. Alwattar
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- College
of Science, University of Basrah, Garmat Ali, 61004 Basrah, Iraq
| | - Mark S. Little
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Adam V. S. Parry
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Fiona M. Porter
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Mark A. Vincent
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ian H. Hillier
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Flor R. Siperstein
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Aravind Vijayaraghavan
- School
of Materials and National Graphene Institute, The University of Manchester, Manchester M13 9PL, U.K.
| | - Stephen G. Yeates
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Peter Quayle
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|