1
|
Fang X, Xie Y, Wu S, Su N, Xu W, Guo H, Liu Y. Mussel-inspired modification of bamboo fibers via co-deposition of polydopamine cross-linked polyethyleneimine for advanced interfacial compatibility improvement in PLA composites. Int J Biol Macromol 2025; 307:142122. [PMID: 40089235 DOI: 10.1016/j.ijbiomac.2025.142122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/17/2025]
Abstract
Interfacial modification has been extensively studied in the realm of plant fiber-reinforced bio-composites, with biomimetic polydopamine (PDA) modification garnering significant attention in recent years. This paper presents a novel strategy involving the one-pot co-deposition of PDA cross-linked with polyethyleneimine (PEI) to modify bamboo fibers (BF) for reinforcing polylactic acid (PLA). This approach enhances the interfacial compatibility between BF and PLA through robust linkages in a convenient, green, and non-destructive way. Our findings demonstrate that the PDA cross-linked PEI method is more efficient and controllable compared to the single PDA modification method. Specifically, the flexural strength, tensile strength, and impact strength of PDA/PEI modified composites increased by 26.38 %, 24.11 %, and 49.42 %, respectively. This represents nearly double the enhancement achieved by PDA modification alone, underscoring the efficacy of PDA/PEI cross-linked networks on the BF surface in providing strength, dissipating strain, and promoting interfacial compatibility. Additionally, the modified PLA composites exhibited improved thermal stability and crystallization behavior. This study introduces a unique approach to producing high-performance, eco-friendly bio-composites, thereby facilitating the broader processing and utilization of biomass resources.
Collapse
Affiliation(s)
- Xiaoyang Fang
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxi Xie
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Shuangshuang Wu
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Na Su
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Xu
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Hongwu Guo
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
| | - Yi Liu
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
| |
Collapse
|
2
|
Junge F, Haag R. Effect of Fluorophilic- and Hydrophobic-Modified Polyglycerol-Based Coatings on the Wettability of Low Surface Energy Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3305-3314. [PMID: 39869393 PMCID: PMC11823634 DOI: 10.1021/acs.langmuir.4c04220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025]
Abstract
Catechol-derived polymers form stable coatings on a wide range of materials including challenging to coat low surface energy polymers. Whether modification of the coating polymer with fluorophilic or hydrophobic groups is a successful approach to further favor the coating of hydrophobic or fluorophilic surfaces with catechol-based polymers remains ambiguous. Herein, we report the effect of a series of catechol-derived polyglycerol (PG)-based coatings and monolayer coatings on the wettability of polytetrafluoroethylene (PTFE), polystyrene, and poly(methyl methacrylate) surfaces. Coatings with a longer hydrophilic PG block resulted in surface coatings with water contact angles (WCAs) around 60° independently of the modification and substrate, while coatings with a longer hydrophobic anchoring block possessed more diverse WCAs up to (129 ± 10)°. Despite the generally small impact of the fluorophilic modification for most substrate/coating combinations, some fluorophilic modified coatings reduce the WCA of PTFE below Berg's limit of 65°, indicating a shielding of fluorous segments from the surface.
Collapse
Affiliation(s)
- Florian Junge
- Institut für Chemie
und Biochemie, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Rainer Haag
- Institut für Chemie
und Biochemie, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
3
|
Taghavian H, Černík M, Dvořák L. Advanced (bio)fouling resistant surface modification of PTFE hollow-fiber membranes for water treatment. Sci Rep 2023; 13:11871. [PMID: 37481651 PMCID: PMC10363105 DOI: 10.1038/s41598-023-38764-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023] Open
Abstract
Membrane surface treatment to modify anti-(bio)fouling resistivity plays a key role in membrane technology. This paper reports on the successful use of air-stimulated surface polymerization of dopamine hydrochloride incorporated ZnO nanoparticles (ZnO NPs) for impeding the intrinsic hydrophobicity and low anti-(bio)fouling resistivity of polytetrafluoroethylene (PTFE) hollow-fiber membranes (HFMs). The study involved the use of pristine and polydopamine (Pdopa) coated PTFE HFMs, both with and without the presence of an air supply and added ZnO NPs. Zeta potential measurements were performed to evaluate the dispersion stability of ZnO NPs prior to immobilization, while morphological characterization and time-dependency of the Pdopa growth layer were illustrated through scanning electron microscopy. Pdopa surface polymerization and ZnO NPs immobilization were confirmed using FT-IR and EDX spectroscopy. Transformation of the PTFE HFM surface features to superhydrophilic was demonstrated through water contact angle analysis and the stability of immobilized ZnO NPs assessed by ICP analysis. Anti-fouling criteria and (bio)fouling resistivity performance of the surface-modified membranes were assessed through flux recovery determination of bovine serum albumin in dead-end filtration as well as dynamic-contact-condition microbial evaluation against Staphylococcus spp. and Escherichia coli, respectively. The filtration recovery ratio and antimicrobial results suggested promising surface modification impacts on the anti-fouling properties of PTFE HFM. As such, the method represents the first successful use of air-stimulated Pdopa coating incorporating ZnO NPs to induce superhydrophilic PTFE HFM surface modification. Such a method can be extended to the other membranes associated with water treatment processes.
Collapse
Affiliation(s)
- Hadi Taghavian
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17 Liberec 1, Czech Republic
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Lukáš Dvořák
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic.
| |
Collapse
|
4
|
Li J, Liu Y, Qu L, Cao X, Li X. Effect of polypyrrole surface modification on antifouling performance of PTFE microfiltration membrane. JOURNAL OF POLYMER ENGINEERING 2023. [DOI: 10.1515/polyeng-2022-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Abstract
In this study, polypyrrole was prepared by in situ chemical oxidation polymerization and deposited on the surface of the PTFE membrane. The surface morphology of the membrane shown that the membrane fouling degree of the modified membrane was much lower than that of the original membrane. Besides, the contact angle value decreased from 107.20° to 72.62°, and its hydrophilicity was significantly enhanced. It took humic acid (HA) as a typical representative membrane foulants, and static and dynamic HA adsorption experiments were carried out on the membranes before and after modification. In the static adsorption experiment of HA, the adsorption capacity of an original membrane was 1.28 times that of a modified membrane. In the dynamic antifouling experiment of HA, the rejection of the modified membrane to HA was 62.99%, while that of the original membrane was only 39.82%. In addition, the experimental results showed that the modified membrane had a higher flux recovery rate, which was 1.18 times that of the original membrane. This study proves that the modified membrane has an extraordinary antifouling effect.
Collapse
Affiliation(s)
- Jiazhu Li
- School of Energy and Environment, Southeast University , Nanjing , Jiangsu 210096 , P. R. China
| | - Yanqing Liu
- School of Energy and Environment, Southeast University , Nanjing , Jiangsu 210096 , P. R. China
| | - Liwei Qu
- School of Energy and Environment, Southeast University , Nanjing , Jiangsu 210096 , P. R. China
| | - Xian Cao
- School of Energy and Environment, Southeast University , Nanjing , Jiangsu 210096 , P. R. China
| | - Xianning Li
- School of Energy and Environment, Southeast University , Nanjing , Jiangsu 210096 , P. R. China
| |
Collapse
|
5
|
Togo H, Terada K, Ujitsugu A, Hirose Y, Takeuchi H, Kusunoki M. Fabrication Scaffold with High Dimensional Control for Spheroids with Undifferentiated iPS Cell Properties. Cells 2023; 12:278. [PMID: 36672213 PMCID: PMC9857117 DOI: 10.3390/cells12020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Spheroids are expected to aid the establishment of an in vitro-based cell culture system that can realistically reproduce cellular dynamics in vivo. We developed a fluoropolymer scaffold with an extracellular matrix (ECM) dot array and confirmed the possibility of mass-producing spheroids with uniform dimensions. Controlling the quality of ECM dots is important as it ensures spheroid uniformity, but issues such as pattern deviation and ECM drying persist in the conventional microstamping method. In this study, these problems were overcome via ECM dot printing using a resin mask with dot-patterned holes. For dot diameters of φ 300 μm, 400 μm, and 600 μm, the average spheroid diameters of human iPS cells (hiPSCs) were φ 260.8 μm, 292.4 μm, and 330.7 μm, respectively. The standard deviation when each average was normalized to 100 was 14.1%. A high throughput of 89.9% for colony formation rate to the number of dots and 89.3% for spheroid collection rate was achieved. The cells proliferated on ECM dots, and the colonies could be naturally detached from the scaffold without the use of enzymes, so there was almost no stimulation of the cells. Thus, the undifferentiated nature of hiPSCs was maintained until day 4. Therefore, this method is expected to be useful in drug discovery and regenerative medicine.
Collapse
Affiliation(s)
- Hidetaka Togo
- Graduate School of Biology-Oriented-Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Wakayama, Japan
| | - Kento Terada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Mie, Japan
| | - Akira Ujitsugu
- Faculty of Biology-Oriented-Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Wakayama, Japan
| | - Yudai Hirose
- Graduate School of Biology-Oriented-Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Wakayama, Japan
| | - Hiroki Takeuchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Mie, Japan
| | - Masanobu Kusunoki
- Graduate School of Biology-Oriented-Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Wakayama, Japan
- Faculty of Biology-Oriented-Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Wakayama, Japan
| |
Collapse
|
6
|
Keyvan Hosseini P, Liu L, Keyvan Hosseini M, Bhattacharyya A, Miao J, Wang F. Treatment of a synthetic decanted oily seawater in a pilot-scale hollow fiber membrane filtration process: Experimental investigation. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129928. [PMID: 36113349 DOI: 10.1016/j.jhazmat.2022.129928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/16/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
This study investigates the performance of a pilot-scale submerged hollow fiber (HF) ultrafiltration (UF) polytetrafluoroethylene (PTFE) membrane filtration system for the treatment of two different types of oily seawater (i.e., seawater contaminated with light and heavy crude oil). The effects of membrane flux and aeration flow rate on membrane performance and the removal efficiency of different fractions of hydrocarbon, including polycyclic aromatic hydrocarbons (PAHs) were examined. The results for both heavy and light crude oil contaminated wastewater reveal that total petroleum hydrocarbon (TPH) removal efficiency of more than 91% was achieved. This research paper determined the optimal operational parameters for an HF membrane filtration system to obtain a good TPH removal efficiency. This system can easily be upscaled and placed on a barge to treat oily wastewater generated from marine oil spills, which can significantly improve the oil spill response capacity.
Collapse
Affiliation(s)
- Parisa Keyvan Hosseini
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Lei Liu
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Mahsa Keyvan Hosseini
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Anisha Bhattacharyya
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Jiahe Miao
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; School of Environment, Nanjing Normal University, Nanjing, Jangsu 210023, China.
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jangsu 210023, China.
| |
Collapse
|
7
|
Kobayashi M, Nishimura F, Kim JH, Yonezawa S. Dyeable Hydrophilic Surface Modification for PTFE Substrates by Surface Fluorination. MEMBRANES 2023; 13:57. [PMID: 36676864 PMCID: PMC9865303 DOI: 10.3390/membranes13010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Polytetrafluoroethylene (PTFE) is the most widely used fluoropolymer that has various functionalities such as heat resistance, chemical resistance, abrasion resistance, and non-adhesiveness. However, PTFE is difficult to dye because of its high water repellency. In this study, the PTFE surface was modified by a combination of gold sputtering and surface fluorination to improve dyeability. X-ray photoelectron spectroscopy indicated that, compared with the untreated sample, the gold-sputtered and acid-washed surface of PTFE had a negligible number of C-F terminals. Furthermore, the intensity of the C-C peak increased drastically. The polar groups (C=O and C-Fx) increased after surface fluorination, which enhanced the electronegativity of the surface according to the zeta potential results. Dyeing tests with methylene blue basic dye showed that the dye staining intensity on the surface of fluorinated PTFE samples was superior to other samples. It is due to the increased surface roughness and the negatively charged surface of fluorinated PTFE samples. The modified PTFE substrates may find broad applicability for dyeing, hydrophilic membrane filters, and other adsorption needs.
Collapse
Affiliation(s)
- Mizuki Kobayashi
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Fumihiro Nishimura
- Cooperative Research Center, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Jae-Ho Kim
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Susumu Yonezawa
- Cooperative Research Center, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
8
|
Shim E, Noh J, Kim Y. Development and Performance Evaluation of Polytetrafluoroethylene-Membrane-Based Automotive Cabin Air Filter. ACS OMEGA 2022; 7:43738-43746. [PMID: 36506122 PMCID: PMC9730776 DOI: 10.1021/acsomega.2c04758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
A high-efficiency, long-life cabin filter unit is required for the effective purification of the air inside a vehicle. However, conventional cabin air filters that utilize electrostatic effects are less efficient and less effective owing to environmental factors. Polytetrafluoroethylene (PTFE) membranes exhibit a high porosity and surface-to-surface dust-removal performance, and maintain a stable pressure drop, indicating their good potential as filter materials. Therefore, in this study, the use of PTFE membranes for the fabrication of automobile filters and the filtration performance of the filters were examined. To this end, first, the properties of PTFE membranes mainly used in HEPA air conditioning filters and those of membranes used as vehicle cabin filters were compared. Next, the thickness, weight, stiffness, pore size, and filtration performance characteristics of filter media fabricated by blending melt-blown (MB) nonwoven, PTFE membranes, and supporting nonwoven into a total filtration layer were compared and analyzed. Lastly, the environmental change durability performance of the automobile cabin filter based on PTFE membrane and the results of the test after the installation of the filter in a vehicle were demonstrated.
Collapse
|
9
|
Guo B, Liang J, Chen J, Zhao Y. Highly flexible and ultrathin electromagnetic-interference-shielding film with a sandwich structure based on PTFE@Cu and Ni@PVDF nanocomposite materials. RSC Adv 2022; 12:29688-29696. [PMID: 36321092 PMCID: PMC9575156 DOI: 10.1039/d2ra05439f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Light and flexible electromagnetic-interference-shielding materials are of great significance to control electromagnetic pollution and protect the human body and other nearby equipment or systems. In this study, a film of polytetrafluoroethylene wrapped with copper (PTFE@Cu) was prepared by depositing Cu using electroless plating on the surface of a microporous PTFE film modified by dopamine. A Ni@PVDF membrane was fabricated by casting a suspension of Ni nanochains in PVDF. The two kinds of films were hot-pressed into an ultrathin and efficient electromagnetic-shielding film with a sandwich structure. PTFE and PVDF provided high flexibility to the composite film, while the metal-wrapped polymer fiber structure gave the film an excellent electromagnetic-shielding efficiency, and the Ni nanochains and laminated hot-pressing process further enhanced the shielding ability of the film. Through these combined effects, the conductivity of the composite film reached 1117.57 S cm−1 while the thickness was only about 80 μm, and the average shielding efficiency in the X-band range was as high as 57.16 dB with absorption accounting for about 67.2% of the total shielding. At the same time, the composite film had high strength and flexibility, and the tensile strength could reach 43.49 MPa. Even after bending 1000 times, the conductivity could still be maintained at 174.55 S cm−1, while the average shielding effectiveness in the X-band range was retained at 44.29 dB. The film has great latent applications in flexible devices and portable wearable intelligent devices. Light and flexible electromagnetic-interference-shielding materials are of great significance to control electromagnetic pollution and protect the human body and other nearby equipment or systems.![]()
Collapse
Affiliation(s)
- Bingzhi Guo
- Beijing Institute of TechnologyZhuhai 519088P. R. China
| | - Jianying Liang
- Beijing Institute of TechnologyZhuhai 519088P. R. China,Guangxi UniversityNanning 530004P. R. China
| | | | - Yun Zhao
- Beijing Institute of TechnologyZhuhai 519088P. R. China,School of Chemistry and Chemical Engineering, Beijing Institute of TechnologyBeijing 100081P. R. China
| |
Collapse
|
10
|
Wang H, Guo X, Pei C, Dong W, Yao Y. Hydrophilic modification of polypropylene membrane via tannic and titanium complexation for high‐efficiency oil/water emulsion separation driven by self‐gravity. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Huanmin Wang
- Textile Institute, College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
| | - Xiaoming Guo
- Textile Institute, College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
| | - Cunbao Pei
- Textile Institute, College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
| | - Wei Dong
- Textile Institute, College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
| | - Yongyi Yao
- Textile Institute, College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
| |
Collapse
|
11
|
Dizon GV, Toribio Fowler PM, Venault A, Yeh CC, Tayo LL, Caparanga AR, Aimar P, Chang Y. Dopamine-Induced Surface Zwitterionization of Expanded Poly(tetrafluoroethylene) for Constructing Thermostable Bioinert Materials. ACS Biomater Sci Eng 2022; 8:1532-1543. [PMID: 35319182 DOI: 10.1021/acsbiomaterials.2c00045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although energy-demanding, the surface modification of polytetrafluoroethylene (PTFE) for biomedical applications is mandatory to mitigate irreversible biofouling that occurs whenever PTFE comes into contact with biological fluids. Here, we propose to take advantage of the adhesive properties of dopamine (DA) and of the antifouling ability of various zwitterionic monomers (sulfobetaine methacrylate (SBMA), sulfobetaine methacrylamide (SBAA), sulfobetaine acrylamide (SBAA'), and 4-vinylpyridine propylsulfobetaine (4VPPS)) and form antifouling coatings by copolymerization on the surface of expanded PTFE membranes. This simple, low-energy, and one-step coating procedure arises in significant biofouling mitigation. All zwitterionic coatings led to important reduction of biofouling by red blood cell conentrate (88-94%), platelet conentrate (70-90%), whole blood (40-66%), or bacteria (83-96%). Also, it is shown that the interactions of polydopamine with ePTFE are stable even at high temperatures. However, the zwitterionic monomers are differently affected. While the performance of SBMA coatings decreased (as SBMA is prone to hydrolysis), those of SBAA, SBAA', and 4VPPS coatings were generally maintained. All in all, this study illustrates that efficient and stable antifouling zwitterionic coatings can be generated onto PTFE membranes for biomedical applications, without the use of conventional high-energy-demanding surface modification processes.
Collapse
Affiliation(s)
- Gian Vincent Dizon
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Peter Matthew Toribio Fowler
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Intramuros, Manila 1002, Philippines.,School of Graduate Studies, Mapúa University, Intramuros, Manila 1002, Philippines
| | - Antoine Venault
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Chih-Chen Yeh
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Lemmuel L Tayo
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Intramuros, Manila 1002, Philippines
| | - Alvin R Caparanga
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Intramuros, Manila 1002, Philippines
| | - Pierre Aimar
- Laboratoire de Geńie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse 31062, France
| | - Yung Chang
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
12
|
Li W, Ma X, Yan J, Zou W, Zheng W, Li Y, Liang Y. Pressure sensitive adhesive based on
PFBA
monomer for
ePTFE
bonding. J Appl Polym Sci 2022. [DOI: 10.1002/app.52278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Li
- College of Chemistry and Engineering Sichuan University of Science and Engineering Zigong P.R. China
| | - Xiao‐Yan Ma
- College of Chemistry and Engineering Sichuan University of Science and Engineering Zigong P.R. China
| | - Jie Yan
- College of Chemistry and Engineering Sichuan University of Science and Engineering Zigong P.R. China
| | - Wei Zou
- College of Chemistry and Engineering Sichuan University of Science and Engineering Zigong P.R. China
| | - Wenjiang Zheng
- College of Chemistry and Engineering Sichuan University of Science and Engineering Zigong P.R. China
| | - Yanli Li
- College of Chemistry and Engineering Sichuan University of Science and Engineering Zigong P.R. China
| | - Yanli Liang
- College of Chemistry and Engineering Sichuan University of Science and Engineering Zigong P.R. China
| |
Collapse
|
13
|
Liu Z, Zhang Y, Zhou Q, Chen R, Guo S. Surface modification of
PTFE
/
SiO
2
composite films through the deposition of polydopamine (
PDA
) and the modified adhesive properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.52153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhiyu Liu
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology Polymer Research Institute of Sichuan University Chengdu China
| | - Yao Zhang
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology Polymer Research Institute of Sichuan University Chengdu China
| | - Qian Zhou
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology Polymer Research Institute of Sichuan University Chengdu China
| | - Rong Chen
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology Polymer Research Institute of Sichuan University Chengdu China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology Polymer Research Institute of Sichuan University Chengdu China
| |
Collapse
|
14
|
Cross-Linking Combined with Surfactant Bilayer Assembly Enhances the Hydrophilic and Antifouling Properties of PTFE Microfiltration Membranes. SEPARATIONS 2021. [DOI: 10.3390/separations9010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The inherent strong hydrophobicity of Polytetrafluoroetylene (PTFE) microfiltration membranes results in low separation efficiency and easy contamination. In order to enhance its hydrophilic and antifouling properties, we first modified the PTFE microfiltration membrane by using Polyethylene glycol laurate (PEGML) for first layer deposition and then used Polyvinyl alcohol (PVA)/citric acid (CA) cross-linked coatings for second layer deposition. The Scanning Electron Microscope (SEM) results showed that the fibers and nodes of the modified PTFE microfiltration membrane were coated with PVA/CA hydrophilic coating. FT-IR Spectromete and X-ray photoelectron spectrometer (XPS) analysis results confirmed that crosslinking of PVA and CA occurred and that PEGML and PVA/CA were successfully deposited onto the membrane surface. The modification conditions were optimized by hydrophilicity testing, and the best hydrophilicity of the modified membrane was achieved when the crosslinking content of PEGML was 2 g·L−1, PVA was 5 g·L−1, and CA was 2 g·L−1. PTFE microfiltration membranes modified by the optimal conditions achieved a water flux of 396.9 L·m−2·h−1 (three times that of the original membrane) at low operating pressures (0.05 MPa), and the contact angle decreased from 120° to 40°. Meanwhile, the modified PTFE microfiltration membrane has improved contamination resistance and good stability of the hydrophilic coating.
Collapse
|
15
|
Development of a Simple Spheroid Production Method Using Fluoropolymers with Reduced Chemical and Physical Damage. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Establishing an in vitro–based cell culture system that can realistically simulate in vivo cell dynamics is desirable. It is thus necessary to develop a method for producing a large amount of cell aggregates (i.e., spheroids) that are uniform in size and quality. Various methods have been proposed for the preparation of spheroids; however, none of them satisfy all requirements, such as cost, size uniformity, and throughput. Herein, we successfully developed a new cell culture method by combining fluoropolymers and dot patterned extracellular matrix substrates to achieve size-controlled spheroids. First, the spheroids were spontaneously formed by culturing them two-dimensionally, after which the cells were detached with a weak liquid flow and cultured in suspension without enzyme treatment. Stable quality spheroids were easily produced, and it is expected that the introduction and running costs of the technique will be low; therefore, this method shows potential for application in the field of regenerative medicine.
Collapse
|
16
|
Xing Z, Wu S, Zhao C, Bai Y, Jin D, Yin M, Liu H, Fan Y. Vascular transplantation with dual-biofunctional ePTFE vascular grafts in a porcine model. J Mater Chem B 2021; 9:7409-7422. [PMID: 34551061 DOI: 10.1039/d1tb01398j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cardiovascular disease (CVD) poses serious health concerns worldwide. The lack of transplantable vascular grafts is an unmet clinical need in the surgical treatment of CVD. Although expanded polytetrafluoroethylene (ePTFE) vascular grafts have been used in clinical practice, a low long-term patency rate in small-diameter transplantation application is still the biggest challenge. Thus, surface modification of ePTFE is sought after. In this study, polydopamine (PDA) was used to improve the hydrophilia and provide immobilization sites in ePTFE. Bivalirudin (BVLD), a direct thrombin inhibitor, was used to enhance the anti-thrombotic activity of ePTFE. The peptides derived from extracellular matrix proteins were used to elevate the bioactivity of ePTFE. The morphology, chemical composition, peptide modified strength, wettability, and hemocompatibility of modified ePTFE vascular grafts were investigated. Then, an endothelial cell proliferation assay was used to evaluate the best co-modification strategy of the ePTFE vascular graft in vitro. Since a large animal could relatively better mimic human physiology, we chose a porcine carotid artery replacement model in the current study. The results showed that the BVLD/REDV co-modified ePTFE vascular grafts had a satisfactory patency rate (66.7%) and a higher endothelial cell coverage ratio (70%) at 12 weeks after implantation. This may offer an opportunity to produce a multi-biofunctional ePTFE vascular graft, thereby yielding a potent product to meet the clinical needs.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China.
| | - Shuting Wu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Chen Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Yating Bai
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China.
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China.
| |
Collapse
|
17
|
Liu W, Lin H, Wang J, Han Q, Liu F. Polytetrafluoroethylene (PTFE) hollow fibers modified by hydrophilic crosslinking network (HCN) for robust resistance to fouling and harsh chemical cleaning. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Upgrading polytetrafluoroethylene hollow-fiber membranes by CFD-optimized atomic layer deposition. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Akhidime ID, Slate AJ, Hulme A, Whitehead KA. The Influence of Surface Topography and Wettability on Escherichia coli Removal from Polymeric Materials in the Presence of a Blood Conditioning Film. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7368. [PMID: 33050212 PMCID: PMC7599617 DOI: 10.3390/ijerph17207368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/25/2022]
Abstract
The reduction of biofouling and the reduction of cross-contamination in the food industry are important aspects of safety management systems. Polymeric surfaces are used extensively throughout the food production industry and therefore ensuring that effective cleaning regimes are conducted is vital. Throughout this study, the influence of the surface characteristics of three different polymeric surfaces, polytetrafluoroethylene (PTFE), poly(methyl methacrylate) (PMMA) and polyethylene terephthalate (PET), on the removal of Escherichia coli using a wipe clean method utilising 3% sodium hypochlorite was determined. The PTFE surfaces were the roughest and demonstrated the least wettable surface (118.8°), followed by the PMMA (75.2°) and PET surfaces (53.9°). Following cleaning with a 3% sodium hypochlorite solution, bacteria were completely removed from the PTFE surfaces, whilst the PMMA and PET surfaces still had high numbers of bacteria recovered (1.2 × 107 CFU/mL and 6.3 × 107 CFU/mL, respectively). When bacterial suspensions were applied to the surfaces in the presence of a blood conditioning film, cleaning with sodium hypochlorite demonstrated that no bacteria were recovered from the PMMA surface. However, on both the PTFE and PET surfaces, bacteria were recovered at lower concentrations (2.0 × 102 CFU/mL and 1.3 × 103 CFU/mL, respectively). ATP bioluminescence results demonstrated significantly different ATP concentrations on the surfaces when soiled (PTFE: 132 relative light units (RLU), PMMA: 80 RLU and PET: 99 RLU). Following cleaning, both in the presence and absence of a blood conditioning film, all the surfaces were considered clean, producing ATP concentrations in the range of 0-2 RLU. The results generated in this study demonstrated that the presence of a blood conditioning film significantly altered the removal of bacteria from the polymeric surfaces following a standard cleaning regime. Conditioning films which represent the environment where the surface is intended to be used should be a vital part of the test regime to ensure an effective disinfection process.
Collapse
Affiliation(s)
- I. Devine Akhidime
- Microbiology at Interfaces, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK; (I.D.A.); (A.H.)
| | - Anthony J. Slate
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK;
| | - Anca Hulme
- Microbiology at Interfaces, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK; (I.D.A.); (A.H.)
| | - Kathryn A. Whitehead
- Microbiology at Interfaces, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK; (I.D.A.); (A.H.)
| |
Collapse
|
20
|
Fowler PMPT, Dizon GV, Tayo LL, Caparanga AR, Huang J, Zheng J, Aimar P, Chang Y. Surface Zwitterionization of Expanded Poly(tetrafluoroethylene) via Dopamine-Assisted Consecutive Immersion Coating. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41000-41010. [PMID: 32822163 DOI: 10.1021/acsami.0c09073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Expanded polytetrafluoroethylene (ePTFE) is one of the materials widely used in the biomedical field, yet its application is being limited by adverse reactions such as thrombosis when it comes in contact with blood. Thus, a simple and robust way to modify ePTFE to be biologically inert is sought after. Modification of ePTFE without high-energy pretreatment, such as immersion coating, has been of interest to researchers for its straightforward process and ease in scaling up. In this study, we utilized a two-step immersion coating to zwitterionize ePTFE membranes. The first coating consists of the co-deposition of polyethylenimine (PEI) and polydopamine (PDA) to produce amine groups in the surface of the ePTFE for further functionalization. These amine groups from PEI will be coupled with the epoxide group of the zwitterionic copolymer, poly(GMA-co-SBMA) (PGS), via a ring-opening reaction in the second coating. The coated ePTFE membranes were physically and chemically characterized to ensure that each step of the coating is successful. The membranes were also tested for their thrombogenicity via quantification of the blood cells attached to it during contact with biological solutions. The coated membranes exhibited around 90% reduction in attachment with respect to the uncoated ePTFE for both Gram-positive and Gram-negative strains of bacteria (Staphylococcus aureus and Escherichia coli). The coating was also able to resist blood cell attachment from human whole blood by 81.57% and resist red blood cell attachment from red blood cell concentrate by 93.4%. These ePTFE membranes, which are coated by a simple immersion coating, show significant enhancement of the biocompatibility of the membranes, which shows promise for future use in biological devices.
Collapse
Affiliation(s)
- Peter Matthew Paul T Fowler
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Intramuros, Manila 1002, Philippines
- School of Graduate Studies, Mapúa University, Intramuros, Manila 1002, Philippines
| | - Gian Vincent Dizon
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 32023, Taiwan
| | - Lemmuel L Tayo
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Intramuros, Manila 1002, Philippines
| | - Alvin R Caparanga
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Intramuros, Manila 1002, Philippines
| | - James Huang
- Yeu Ming Tai Chemical Industrial Co. Ltd., Taichung 407, Taiwan
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Pierre Aimar
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse 31062, France
| | - Yung Chang
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 32023, Taiwan
- Department of Chemical Engineering, Research Center for Circular Economy, Chung Yuan Christian University, Chungli, Taoyuan 32023, Taiwan
| |
Collapse
|
21
|
Floros IN, Kouvelos EP, Pilatos GI, Hadjigeorgiou EP, Gotzias AD, Favvas EP, Sapalidis AA. Enhancement of Flux Performance in PTFE Membranes for Direct Contact Membrane Distillation. Polymers (Basel) 2020; 12:E345. [PMID: 32033433 PMCID: PMC7077436 DOI: 10.3390/polym12020345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 11/17/2022] Open
Abstract
This work focused on enhancing the flux on hydrophobic polymeric membranes aimed for direct contact membrane distillation desalination (DCMD) process without compromising salt rejection efficiency. Successful coating of commercial porous poly-tetrafluoroethylene membranes with poly(vinyl alcohol) (PVA) was achieved by solution dipping followed by a cross-linking step. The modified membranes were evaluated for their performance in DCMD, in terms of water flux and salt rejection. A series of different PVA concentration dipping solutions were used, and the results indicated that there was an optimum concentration after which the membranes became hydrophilic and unsuitable for use in membrane distillation. Best performing membranes were achieved under the specific experimental conditions, water flux 12.2 L·m-2·h-1 [LMH] with a salt rejection of 99.9%. Compared to the pristine membrane, the flux was enhanced by a factor of 2.7. The results seemed to indicate that introducing hydrophilic characteristics in a certain amount to a hydrophobic membrane could significantly enhance the membrane distillation (MD) performance without compromising salt rejection.
Collapse
Affiliation(s)
- Ioannis N. Floros
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Evangelos P. Kouvelos
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
| | - Georgios I. Pilatos
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
| | | | - Anastasios D. Gotzias
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
| | - Evangelos P. Favvas
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
| | - Andreas A. Sapalidis
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
| |
Collapse
|
22
|
Song HM, Chen C, Shui XX, Yang H, Zhu LJ, Zeng ZX, Xue QJ. Asymmetric Janus membranes based on in situ mussel-inspired chemistry for efficient oil/water separation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Yao L, He C, Chen S, Zhao W, Xie Y, Sun S, Nie S, Zhao C. Codeposition of Polydopamine and Zwitterionic Polymer on Membrane Surface with Enhanced Stability and Antibiofouling Property. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1430-1439. [PMID: 30056716 DOI: 10.1021/acs.langmuir.8b01621] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although abundant works have been developed in mussel-inspired antifouling coatings, most of them suffer from poor chemical stability, especially in a strongly alkaline environment. Herein, we report a robust one-step mussel-inspired method to construct a highly chemical stable and excellent antibiofouling membrane surface coating with a highly efficient codeposition of polydopamine (PDA) with zwitterionic polymer. In the study, PDA and polyethylenimine-quaternized derivative (PEI-S) are codeposited on the surface of poly(ether sulfone) (PES) ultrafiltration membrane in water at room temperature. In contrast to individual PDA coating, the obtained PDA/PEI-S coating exhibits excellent chemical stability even in a strongly alkaline environment owing to the cross-linking and unexpected cation-π interaction between the PEI-S and PDA. Thanks to the introduction of PEI-S, systematic protein adsorption tests and bacteria adhesion experiments demonstrated that the surfaces could prevent bovine serum fibrinogen and lysozyme adsorption and could reduce Gram-positive bacteria S. aureus and Gram-negative bacteria E. coli adhesion. Benefiting from the versatile functionality of PDA, the proposed strategy is not limited to PES membrane surface but also others such as poly(ethylene terephthalate) sheets and commercial polypropylene microfiltration membranes. Overall, this work enriches the exploration of a remarkable coating with enhanced stability and excellent antifouling property via a facile, robust, and material-independent approach to modifying the membrane surface.
Collapse
Affiliation(s)
- Liangsong Yao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Shengqiu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Shengqiang Nie
- College of Chemistry and Materials Engineering , Guiyang University , Guiyang 550000 , China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| |
Collapse
|
24
|
Li C, Zhang H, Wang F, Zhu H, Guo Y, Chen M. PVA and CS cross-linking combined with in situ chimeric SiO2 nanoparticle adhesion to enhance the hydrophilicity and antibacterial properties of PTFE flat membranes. RSC Adv 2019; 9:19205-19216. [PMID: 35516864 PMCID: PMC9064884 DOI: 10.1039/c9ra02396h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/27/2019] [Indexed: 11/21/2022] Open
Abstract
Herein, a new hydrophilic and antibacterial polytetrafluoroethylene (PTFE) flat MF membrane was fabricated via a low-cost and simple preparation method in which chitosan (CS) was crosslinked with poly(vinyl alcohol) (PVA) using epichlorohydrin (ECH) as a cross-linker followed by in situ chimeric SiO2 nanoparticle adhesion. The surface of the modified membrane had decreased C and F contents, and a large number of hydrophilic groups appeared. The treated membrane had good hydrophilicity and antibacterial properties. Moreover, the PTFE-modified membrane had high separation efficiency and antifouling property for oil-in-water emulsions. Finally, the hydrophilic stability of the PTFE membrane was studied by subjecting it to continuous water rinsing and soaking in solutions of different pH values. The present study demonstrates that this modified membrane has potential practical applications in industrial wastewater recovery. Herein, a new hydrophilic and antibacterial PTFE flat MF membrane was fabricated via a low-cost and simple preparation method in which CS was crosslinked with PVA using ECH as a cross-linker followed by in situ chimeric SiO2 nanoparticle adhesion.![]()
Collapse
Affiliation(s)
- Chengcai Li
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou
- China
| | - Hang Zhang
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou
- China
| | - Feng Wang
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou
- China
- Zhejiang Kertice Hi-Tech Fluor-Material Co., LTD
| | - Hailin Zhu
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou
- China
- Zhejiang Kertice Hi-Tech Fluor-Material Co., LTD
| | - Yuhai Guo
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou
- China
| | - Meiyu Chen
- School of Textile Science and Engineering
- Xi'an Polytechnic University
- Xi'an 710048
- China
| |
Collapse
|
25
|
Qi Y, Zhu L, Gao C, Shen J. A novel nanofiltration membrane with simultaneously enhanced antifouling and antibacterial properties. RSC Adv 2019; 9:6107-6117. [PMID: 35517273 PMCID: PMC9060863 DOI: 10.1039/c8ra09875a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/02/2019] [Indexed: 12/17/2022] Open
Abstract
A novel nanofiltration membrane is prepared by using polydopamine (PDA) and hydroxyl propyl trimethyl ammonium chloride chitosan (HACC) mixed with chitosan (CN) and chelated silver (Ag) nanoparticles.
Collapse
Affiliation(s)
- Yawei Qi
- Center for Membrane Separation and Water Science & Technology
- Ocean College
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Lifang Zhu
- Center for Membrane Separation and Water Science & Technology
- Ocean College
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology
- Ocean College
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Jiangnan Shen
- Center for Membrane Separation and Water Science & Technology
- Ocean College
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|
26
|
Li J, Jiang C, Shi W, Song F, He D, Miao H, Wang T, Deng J, Ruan W. Polytetrafluoroethylene (PTFE) hollow fiber AnMBR performance in the treatment of organic wastewater with varying salinity and membrane cleaning behavior. BIORESOURCE TECHNOLOGY 2018; 267:363-370. [PMID: 30031274 DOI: 10.1016/j.biortech.2018.07.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
PTFE hollow fiber anaerobic membrane bio-reactor (AnMBR) performance was investigated in the treatment of organic wastewater, with varying salinity and PTFE membrane cleaning behavior. The AnMBR was operated for 226 days, with a total and biological COD removal efficiency of 97.2% and 89.9% respectively, at a NaCl concentration of 35 g L-1. A high number of Proteobacteria (38.2%) and Bacteroidetes (25.9%) were present in the system, with an increase in membrane fouling rate from 1.88 × 1011 to 2.63 × 1011 m-1 d-1 with higher salinity. The effects of soluble microbial products (SMP), extracellular polymeric substances (EPS), low molecular-weight (LMW) carbohydrates, sludge particle size and inorganic element accumulation, were evaluated on membrane fouling. Flux recovery of fouled PTFE membranes reached 91.6% with offline cleaning. Overall, results indicate that PTFE hollow fiber AnMBR provides a promising method for the treatment of saline organic wastewater.
Collapse
Affiliation(s)
- Jing Li
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Changwang Jiang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Feiyue Song
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Di He
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hengfeng Miao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Tao Wang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingxuan Deng
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China.
| |
Collapse
|
27
|
Shao H, Wei F, Luo D, Zhang K, Liang S, Tian Q, Qin S, Yu J. Improving the antifouling property of polypropylene hollow fiber membranes by in situ
ultrasonic wave-assisted polymerization of styrene and maleic anhydride. POLYM ENG SCI 2018. [DOI: 10.1002/pen.24843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huiju Shao
- College of Materials Science and Metallurgy; Guizhou University; Guiyang, 550025 People's Republic of China
- National Engineering Research Center for Compounding and Modification of Polymer Materials; Guiyang, 550014 People's Republic of China
| | - Fujian Wei
- National Engineering Research Center for Compounding and Modification of Polymer Materials; Guiyang, 550014 People's Republic of China
| | - Dajun Luo
- College of Materials Science and Metallurgy; Guizhou University; Guiyang, 550025 People's Republic of China
| | - Kaizhou Zhang
- National Engineering Research Center for Compounding and Modification of Polymer Materials; Guiyang, 550014 People's Republic of China
| | - Songmiao Liang
- Vontron Membrane Technology Co., Ltd; Guiyang, 550018 People's Republic of China
| | - Qin Tian
- College of Materials Science and Metallurgy; Guizhou University; Guiyang, 550025 People's Republic of China
- National Engineering Research Center for Compounding and Modification of Polymer Materials; Guiyang, 550014 People's Republic of China
| | - Shuhao Qin
- College of Materials Science and Metallurgy; Guizhou University; Guiyang, 550025 People's Republic of China
- National Engineering Research Center for Compounding and Modification of Polymer Materials; Guiyang, 550014 People's Republic of China
| | - Jie Yu
- College of Materials Science and Metallurgy; Guizhou University; Guiyang, 550025 People's Republic of China
- National Engineering Research Center for Compounding and Modification of Polymer Materials; Guiyang, 550014 People's Republic of China
| |
Collapse
|
28
|
Wang Z, Jia Z, Jiang Y, Li P, Han L, Lu X, Ren F, Wang K, Yuan H. Mussel-inspired nano-building block assemblies for mimicking extracellular matrix microenvironments with multiple functions. Biofabrication 2017; 9:035005. [DOI: 10.1088/1758-5090/aa7fdc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|