1
|
Amini MH, Beyki MH. Construction of 1, 10-phenanthroline functionalized magnetic starch as a lead (II) tagged surface imprinted biopolymer for highly selective targeting of toxic lead ions. Int J Biol Macromol 2023:124996. [PMID: 37236569 DOI: 10.1016/j.ijbiomac.2023.124996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
In this research 1, 10 - phenanthroline functionalized CaFe2O4 - starch was employed as a magnetic ion-imprinted polymer (IIP) for highly selective targeting toxic Pb2+ ions from aqueous media. VSM analysis revealed that the sorbent has magnetic saturation of 10 emu g-1 which is appropriate for magnetic separation. Moreover, TEM analysis confirmed that the adsorbent is composed of particles with a mean diameter of 10 nm. According to XPS analysis, lead coordination with phenanthroline is the main adsorption mechanism that is along with electrostatic interaction. A maximum adsorption capacity of 120 mg g-1 was obtained within 10 min at a pH of 6 and an adsorbent dosage of 20 mg. Kinetic and isotherm studies showed that lead adsorption followed the pseudo-second-order and Freundlich models, respectively. The selectivity coefficient of Pb (II) relative to Cu(II), Co(II), Ni(II), Zn(II), Mn(II), and Cd(II) was 4.7, 14, 20, 36, 13 and 25, respectively. Moreover, the IIP represents the imprinting factor of 1.32. The sorbent showed good regeneration after five cycles of the sorption/desorption process with an efficiency of >93 %. Finally represented IIP was used for lead preconcentration from various matrices i.e., water, vegetable, and fish samples.
Collapse
Affiliation(s)
| | - Mostafa Hossein Beyki
- School of Chemistry, University College of Science, university of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Lazar MM, Ghiorghita CA, Dragan ES, Humelnicu D, Dinu MV. Ion-Imprinted Polymeric Materials for Selective Adsorption of Heavy Metal Ions from Aqueous Solution. Molecules 2023; 28:molecules28062798. [PMID: 36985770 PMCID: PMC10055817 DOI: 10.3390/molecules28062798] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The introduction of selective recognition sites toward certain heavy metal ions (HMIs) is a great challenge, which has a major role when the separation of species with similar physicochemical features is considered. In this context, ion-imprinted polymers (IIPs) developed based on the principle of molecular imprinting methodology, have emerged as an innovative solution. Recent advances in IIPs have shown that they exhibit higher selectivity coefficients than non-imprinted ones, which could support a large range of environmental applications starting from extraction and monitoring of HMIs to their detection and quantification. This review will emphasize the application of IIPs for selective removal of transition metal ions (including HMIs, precious metal ions, radionuclides, and rare earth metal ions) from aqueous solution by critically analyzing the most relevant literature studies from the last decade. In the first part of this review, the chemical components of IIPs, the main ion-imprinting technologies as well as the characterization methods used to evaluate the binding properties are briefly presented. In the second part, synthesis parameters, adsorption performance, and a descriptive analysis of solid phase extraction of heavy metal ions by various IIPs are provided.
Collapse
Affiliation(s)
- Maria Marinela Lazar
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Claudiu-Augustin Ghiorghita
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Ecaterina Stela Dragan
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Doina Humelnicu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Carol I Bd. 11, 700506 Iasi, Romania
| | - Maria Valentina Dinu
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| |
Collapse
|
3
|
Insights into ion-imprinted materials for the recovery of metal ions: Preparation, evaluation and application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121469] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
4
|
Kocaoba S. Determination of some heavy metals from aqueous solutions using modified Amberlite XAD-4 resin by selective solid-phase extraction. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00324-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe adsorption efficiency of Pb(II) and Cd(II) from aqueous solutions on m-phenylenediamine-modified Amberlite XAD-4 resin was investigated. The effects of pH, adsorbent amount, initial metal concentration, eluent type and volume and flow rate on the retention of the metal ions have been studied on column studies. The optimum parameters were determined as pH 5, concentration 10 mg/L, stirring time 30 min and 0.2 g adsorbent amount and flow rate 2.5 mL/min for a quantitative adsorption. Sorption data were interpreted in terms of Langmuir and Freundlich equations, and both models were found to be fully appropriate. Each column can be used up to 10 sequential analyses without considerable change. The results indicate high metal adsorption capacity and satisfactory recovery of Pb(II) and Cd(II).
Collapse
|
5
|
Elsayed NH, Monier M, Alatawi RA, Albalawi MA, Alhawiti AS. Preparation of chromium (III) ion-imprinted polymer based on azo dye functionalized chitosan. Carbohydr Polym 2022; 284:119139. [DOI: 10.1016/j.carbpol.2022.119139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/26/2021] [Accepted: 01/10/2022] [Indexed: 01/11/2023]
|
6
|
Development of Solid Phase Extraction Method Based on Ion Imprinted Polymer for Determination of Cr(III) Ions by ETAAS in Waters. WATER 2022. [DOI: 10.3390/w14040529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this work, a new solid phase extraction method for the determination of chromium species in water samples by electrothermal atomic absorption spectrometry was developed. For selective separation of Cr(III) ions under dynamic conditions, two ion imprinted polymers containing Cr(III)-1,10-phenanthroline complex (Cr(III)-phen) were prepared with the use of one (styrene, ST) or two (styrene and 4-vinylpyridine, ST-4VP) functional monomers. The physicochemical properties of those solid sorbents towards Cr(III) ions were studied and compared. It was found that Cr(III) ions were retained on the Cr(III)-phen-ST and Cr(III)-phen-ST-4VP polymers with high efficiency and repeatability (91.6% and 92.9%, RSD < 2%) from solutions at pH 4.5. The quantitative recovery of the analyte (91.7% and 93.9%, RSD < 4%) was obtained with 0.1 mol/L EDTA solution. The introduction of 4VP, an additional functional monomer, improved selectivity of the Cr(III)-phen-ST-4VP polymer towards Cr(III) ions in the presence of Cu(II), Mn(II) and Fe(III) ions, and slightly decreased the sorption capacity and stability of that polymer. The accuracy of procedures based on both polymeric sorbents was proved by analyzing the standard reference material of surface water SRM 1643e. The method using the Cr(III)-phen-ST polymer was applied for determining of Cr(III) ions in tap water and infusion of a green tea.
Collapse
|
7
|
Dakova I, Mitreva M, Karadjova I. Fe(II)
ion‐imprinted copolymer gels − smart materials for
Fe(II)/Fe(III)
speciation in surface waters. POLYM INT 2021. [DOI: 10.1002/pi.6334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ivanka Dakova
- Department of Analytical Chemistry, Faculty of Chemistry and Pharmacy University of Sofia ‘St Kliment Ohridski’ Sofia Bulgaria
| | - Mariya Mitreva
- National Center of Public Health and Analyses Sofia Bulgaria
| | - Irina Karadjova
- Department of Analytical Chemistry, Faculty of Chemistry and Pharmacy University of Sofia ‘St Kliment Ohridski’ Sofia Bulgaria
| |
Collapse
|
8
|
Kusumkar VV, Galamboš M, Viglašová E, Daňo M, Šmelková J. Ion-Imprinted Polymers: Synthesis, Characterization, and Adsorption of Radionuclides. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1083. [PMID: 33652580 PMCID: PMC7956459 DOI: 10.3390/ma14051083] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022]
Abstract
Growing concern over the hazardous effect of radionuclides on the environment is driving research on mitigation and deposition strategies for radioactive waste management. Currently, there are many techniques used for radionuclides separation from the environment such as ion exchange, solvent extraction, chemical precipitation and adsorption. Adsorbents are the leading area of research and many useful materials are being discovered in this category of radionuclide ion separation. The adsorption technologies lack the ability of selective removal of metal ions from solution. This drawback is eliminated by the use of ion-imprinted polymers, these materials having targeted binding sites for specific ions in the media. In this review article, we present recently published literature about the use of ion-imprinted polymers for the adsorption of 10 important hazardous radionuclides-U, Th, Cs, Sr, Ce, Tc, La, Cr, Ni, Co-found in the nuclear fuel cycle.
Collapse
Affiliation(s)
- Vipul Vilas Kusumkar
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia;
| | - Michal Galamboš
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia;
| | - Eva Viglašová
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia;
| | - Martin Daňo
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehová 7, 115 19 Prague, Czech Republic;
| | - Jana Šmelková
- Department of Administrative Law and Environmental Law, Faculty of Law, Comenius University in Bratislava, Safarikovo namestie 6, 810 00 Bratislava, Slovakia;
| |
Collapse
|
9
|
Liu X, Wang Q, Wang Z, Liu X, Zhang M, Fan J, Zhou Z, Ren Z. Extraction of Rb(I) Ions from Aqueous Solution Using Novel Imprinting Materials. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xingwen Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Qi Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Zhuo Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Xueting Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Minghui Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Jiahui Fan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Zhiyong Zhou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Zhongqi Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
10
|
Felix CS, Silva DG, Andrade HM, Riatto VB, Victor MM, Ferreira SL. An on-line system using ion-imprinted polymer for preconcentration and determination of bismuth in seawater employing atomic fluorescence spectrometry. Talanta 2018; 184:87-92. [DOI: 10.1016/j.talanta.2018.02.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 01/19/2023]
|
11
|
Application of ion-imprinted polymer synthesized by precipitation polymerization as an efficient and selective sorbent for separation and pre-concentration of chromium ions from some real samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1413-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|