1
|
Optimization of rGO-PEI/Naph-SH/AgNWs/Frt/GOx nanocomposite anode for biofuel cell applications. Sci Rep 2020; 10:8919. [PMID: 32488131 PMCID: PMC7265384 DOI: 10.1038/s41598-020-65712-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
The present study reports a new nanocomposite design using surface modified silver nanowires decorated on the surface of polyethyleneimine (PEI), a cationic polymer acting as glue for anchoring nanowires and reduced graphene oxide (rGO). The synthesized nanocomposite was employed as a promising electrode material for immobilization of biomolecules and effective transportation of electron, in enzymatic biofuel cell (EBFCs) application. The synthesized nanocomposite was confirmed by analytical techniques, for instance, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM). The electrochemical behaviour of the nanobioelectrocatalysts rGO-PEI/Frt/GOx, rGO-PEI/AgNWs/Frt/GOx, and rGO-PEI/Naph-SH/AgNWs/Frt/GOx was determined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). The maximum current density obtained by the modified bioanode was found to be 19.9 mA cm−2 at the limiting glucose concentration of 50 mM in PBS (pH 7.0) as supporting electrolyte at a scan rate of 100 mVs−1.
Collapse
|
2
|
Application of Electrically Conducting Nanocomposite Material Polythiophene@NiO/Frt/GOx as Anode for Enzymatic Biofuel Cells. MATERIALS 2020; 13:ma13081823. [PMID: 32290640 PMCID: PMC7215782 DOI: 10.3390/ma13081823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/02/2022]
Abstract
In this work, nano-inspired nickel oxide nanoparticles (NiO) and polythiophene (Pth) modified bioanode was prepared for biofuel cell applications. The chemically prepared nickel oxide nanoparticles and its composite with polythiophene were characterized for elemental composition and microscopic characterization while using scanning electron microscopy. The electrochemical characterizations of polythiophene@NiO composite, biocompatible mediator ferritin (Frt) and glucose oxidase (GOx) catalyst modified glassy carbon (GC) electrode were carried out using cyclic voltammetry (CV), linear sweep voltammetry (LSV), and charge-discharge studies. The current density of Pth@NiO/Frt/GOx bioanode was found to be 5.4 mA/cm2. The bioanode exhibited a good bio-electrocatalytic activity towards the oxidation of the glucose. The experimental studies of the bioanode are justifying its employment in biofuel cells. This will cater a platform for the generation of sustainable energy for low temperature devices.
Collapse
|
3
|
Trifonov A, Stemmer A, Tel-Vered R. Power Generation by Selective Self-Assembly of Biocatalysts. ACS NANO 2019; 13:8630-8638. [PMID: 31310711 DOI: 10.1021/acsnano.9b03013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Through a careful chemical and bioelectronic design we have created a system that uses self-assembly of enzyme-nanoparticle hybrids to yield bioelectrocatalytic functionality and to enable the harnessing of electrical power from biomass. Here we show that mixed populations of hybrids acting as catalyst carriers for clean energy production can be efficiently stored, self-assembled on functionalized stationary surfaces, and magnetically re-collected to make the binding sites on the surfaces available again. The methodology is based on selective interactions occurring between chemically modified surfaces and ligand-functionalized hybrids. The design of a system with minimal cross-talk between the particles, outstanding selective binding of the hybrids at the electrode surfaces, and direct anodic and cathodic electron transfer pathways leads to mediator-less bioelectrocatalytic transformations which are implemented in the construction of a fast self-assembling, membrane-less fructose/O2 biofuel cell.
Collapse
Affiliation(s)
- Alexander Trifonov
- Nanotechnology Group , ETH Zürich , Säumerstrasse 4 , CH - 8803 Rüschlikon , Switzerland
| | - Andreas Stemmer
- Nanotechnology Group , ETH Zürich , Säumerstrasse 4 , CH - 8803 Rüschlikon , Switzerland
| | - Ran Tel-Vered
- Nanotechnology Group , ETH Zürich , Säumerstrasse 4 , CH - 8803 Rüschlikon , Switzerland
| |
Collapse
|
4
|
Okawa Y, Shimada T, Shiba F. Formation of gold-silver hollow nanostructure via silver halide photographic processes and application to direct electron transfer biosensor using fructose dehydrogenase. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Perveen R, Inamuddin, Ul Haque S, Nasar A, Asiri AM, Md Ashraf G. Electrocatalytic Performance of Chemically Synthesized PIn-Au-SGO Composite toward Mediated Biofuel Cell Anode. Sci Rep 2017; 7:13353. [PMID: 29042654 PMCID: PMC5645452 DOI: 10.1038/s41598-017-13539-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/22/2017] [Indexed: 11/24/2022] Open
Abstract
The proposed work intended to make an intellectual contribution to the domain of green nanotechnology which emphasizes the chemical synthesis of a conducting nanocomposite based on the incorporation of gold nanoparticles (Au) into the redox matrix of polyindole (PIn) along with the subsequent improvement in the overall properties of the composite by the addition of sulfonated graphene oxide (SGO). The bioanode was developed by the deposition of the PIn-Au-SGO nanocomposite with subsequent immobilization of ferritin (Frt) and glucose oxidase (GOx) on the glassy carbon electrode (GC). The successful application of the PIn-Au-SGO nanocomposite toward the development of a ferritin-mediated glucose biofuel cell anode was studied by the electrochemical characterization of the constructed bioanode (GC-PIn-Au-SGO/Frt/GOx) for the bioelectrocatalytic oxidation of glucose. The maximum current density obtained by the modified bioanode was found to be 17.8 mA cm−2 at the limiting glucose concentration of 50 mM in 0.1 M K4Fe(CN)6 at a scan rate of 100 mVs−1. The lifetime of the concerned bioelectrode when stored at 4 °C was estimated to be 53 days approximately. The appreciable results of the structural and electrochemical characterization of the PIn-Au-SGO based bioelectrode reveal its potential applications exclusively in implantable medical devices.
Collapse
Affiliation(s)
- Ruma Perveen
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India
| | - Inamuddin
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia. .,Centre of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Sufia Ul Haque
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India
| | - Abu Nasar
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Centre of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|