1
|
Li JY, Liu ZQ, Cui YH, Yang SQ, Gu J, Ma J. Abatement of Aromatic Contaminants from Wastewater by a Heat/Persulfate Process Based on a Polymerization Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18575-18585. [PMID: 36642924 DOI: 10.1021/acs.est.2c06137] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A novel approach to the abatement of pollutants consisting of their conversion to separable solid polymers is explored by a heat/persulfate (PDS) process for the treatment of high-temperature wastewaters. During this process, a simultaneous decontamination and carbon recovery can be achieved with minimal use of PDS, which is significantly different from conventional degradation processes. The feasibility of this process is demonstrated by eight kinds of typical organic pollutants and by a real coking wastewater. For the treatment of the selected pollutants, 30.2-91.9% DOC abatement was achieved with 24.8-91.2% carbon recovery; meanwhile, only 5.2-47.0% of PDS was consumed compared to a conventional degradation process. For the treatment of a real coking wastewater, 71.0% DOC abatement was achieved with 66.0% carbon recovery. With phenol as a representative compound, our polymerization-based heat/PDS process is applicable in a wide pH range (3.5-9.0) with a carbon recovery of >87%. Both SO4•- and HO• can be initiators for polymerization, with different contribution ratios under various conditions. Phenol monomers are semioxidized to form phenolic radicals, which are polymerized via chain transfer or chain growth processes to form separable solid phenol polymers, benzenediol polymers, and cross-linked polymers.
Collapse
Affiliation(s)
- Jia-Ying Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan430074, China
| | - Zheng-Qian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan430074, China
| | - Yu-Hong Cui
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan430074, China
| | - Sui-Qin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan430074, China
| | - Jia Gu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, Jiangsu, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| |
Collapse
|
2
|
Jamoussi B, Chakroun R, Al-Mur BA, Halawani RF, Aloufi FA, Chaabani A, Aljohani NS. Design of a New Phthalocyanine-Based Ion-Imprinted Polymer for Selective Lithium Recovery from Desalination Plant Reverse Osmosis Waste. Polymers (Basel) 2023; 15:3847. [PMID: 37765702 PMCID: PMC10537805 DOI: 10.3390/polym15183847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, a novel technique is introduced that involves the combination of an ion-imprinted polymer and solid-phase extraction to selectively adsorb lithium ions from reverse osmosis brine. In the process of synthesizing ion-imprinted polymers, phthalocyanine acrylate acted as the functional monomer responsible for lithium chelation. The structural and morphological characteristics of the molecularly imprinted polymers and non-imprinted polymers were assessed using Fourier transform infrared spectroscopy and scanning electron microscopy. The adsorption data for Li on an ion-imprinted polymer showed an excellent fit to the Langmuir isotherm, with a maximum adsorption capacity (Qm) of 3.2 mg·g-1. Comprehensive chemical analyses revealed a significant Li concentration with a higher value of 45.36 mg/L. Through the implementation of a central composite design approach, the adsorption and desorption procedures were systematically optimized by varying the pH, temperature, sorbent mass, and elution volume. This systematic approach allowed the identification of the most efficient operating conditions for extracting lithium from seawater reverse osmosis brine using ion-imprinted polymer-solid-phase extraction. The optimum operating conditions for the highest efficiency of adsorbing Li+ were determined to be a pH of 8.49 and a temperature of 45.5 °C. The efficiency of ion-imprinted polymer regeneration was evaluated through a cycle of the adsorption-desorption process, which resulted in Li recoveries of up to 80%. The recovery of Li from the spiked brine sample obtained from the desalination plant reverse osmosis waste through the ion-imprinted polymer ranged from 62.8% to 71.53%.
Collapse
Affiliation(s)
- Bassem Jamoussi
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.C.); (B.A.A.-M.); (R.F.H.); (F.A.A.); (N.S.A.)
| | - Radhouane Chakroun
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.C.); (B.A.A.-M.); (R.F.H.); (F.A.A.); (N.S.A.)
| | - Bandar A. Al-Mur
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.C.); (B.A.A.-M.); (R.F.H.); (F.A.A.); (N.S.A.)
| | - Riyadh F. Halawani
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.C.); (B.A.A.-M.); (R.F.H.); (F.A.A.); (N.S.A.)
| | - Fahed A. Aloufi
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.C.); (B.A.A.-M.); (R.F.H.); (F.A.A.); (N.S.A.)
| | - Anis Chaabani
- Department of Hydrology and Water Resources Management, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Naif S. Aljohani
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.C.); (B.A.A.-M.); (R.F.H.); (F.A.A.); (N.S.A.)
- Saline Water Conversion Corporation, Riyadh 11432, Saudi Arabia
| |
Collapse
|
3
|
Sun XH, Wu J, Yu YC, Shen ZC, Ali MM, Du ZX. Synthesis of magnetic metal-organic framework for efficient adsorption of disinfection by-products in water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Wu B, Tang P, Wei F, Zhou H. Efficient removal of phenol in aqueous solution by the modified abandoned fine blue-coke: equilibrium, thermodynamic, kinetic, and adsorbent regeneration. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2021.2005195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Bo Wu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Peiyao Tang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Fengyu Wei
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Haifeng Zhou
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
5
|
Abbott B, Bedwell TS, Grillo F, Piletsky S, Whitcombe MJ, Piletska E, Garcia-Cruz A, Cowen T, Piletsky SA. Use of polymeric solid phase in synthesis of MIP nanoparticles for biotin. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Wang Y, Cao Y, Zeng X, Huang J, Liu YN. Furan- and Thiophene-Modified Hyper-Crosslinked Polymers and Their Adsorption of Phenol from Aqueous Solution. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- You Wang
- Hunan Provincial Key Laboratory of Micro and Nano Material Interface, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yiwen Cao
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xu Zeng
- Hunan Provincial Key Laboratory of Micro and Nano Material Interface, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jianhan Huang
- Hunan Provincial Key Laboratory of Micro and Nano Material Interface, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro and Nano Material Interface, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
7
|
Hypercrosslinked poly(AN-co-EGDMA-co-VBC): synthesis via suspension polymerization, characterizations, and potential to adsorb diclofenac and metformin from aqueous solution. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04757-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Yang K, Xing J, Chang J, Gu F, Li Z, Huang Z, Cai L. Sodium Lignosulfonate Modified Polystyrene for the Removal of Phenol from Wastewater. Polymers (Basel) 2020; 12:polym12112496. [PMID: 33121197 PMCID: PMC7693492 DOI: 10.3390/polym12112496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
An eco-friendly and novel water treatment material was synthesized using sodium lignosulfonate modified polystyrene (SLPS), which can be used to eliminate phenols in aqueous solution. SLPS was characterized by BET, FTIR, SEM, and EDS. The effect of the initial pH value, phenol content, adsorption time, and temperature on the absorbability of phenol in SLPS was investigated through adsorption experiments. It was found that SLPS could efficiently adsorb phenol in aqueous solution at a pH value of about 7. The test results revealed that the kinetic adsorption and isotherm adsorption could be successfully described using the pseudo second-order and Langmuir models, respectively. It was illustrated that the phenol adsorption on SLPS was dominated by chemisorption and belonged to monolayer adsorption. The max. phenol adsorption value of SLPS was 31.08 mg/g at 30 °C. Therefore, SLPS displayed a great potential for eliminating phenol from polluted water as a kind of novel and effective adsorbent.
Collapse
Affiliation(s)
- Keyan Yang
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (J.X.); (F.G.); (Z.L.)
| | - Jingchen Xing
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (J.X.); (F.G.); (Z.L.)
| | - Jianmin Chang
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (J.X.); (F.G.); (Z.L.)
- Correspondence: ; Tel.: +86-010-6233-7733
| | - Fei Gu
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (J.X.); (F.G.); (Z.L.)
| | - Zheng Li
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (J.X.); (F.G.); (Z.L.)
| | - Zhenhua Huang
- Department of Mechanical Engineering, University of North Texas, Denton, TX 76207, USA; (Z.H.); (L.C.)
| | - Liping Cai
- Department of Mechanical Engineering, University of North Texas, Denton, TX 76207, USA; (Z.H.); (L.C.)
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Shaipulizan NS, Md Jamil SNA, Kamaruzaman S, Subri NNS, Adeyi AA, Abdullah AH, Abdullah LC. Preparation of Ethylene Glycol Dimethacrylate (EGDMA)-Based Terpolymer as Potential Sorbents for Pharmaceuticals Adsorption. Polymers (Basel) 2020; 12:E423. [PMID: 32059354 PMCID: PMC7077665 DOI: 10.3390/polym12020423] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/25/2019] [Accepted: 01/10/2020] [Indexed: 01/01/2023] Open
Abstract
Ethylene glycol dimethacrylate (EGDMA) is used as a crosslinker in poly(acrylonitrile (AN)-co-vinylbenzyl chloride (VBC)) to investigate the effect of long-chain crosslinker to the porosity of the terpolymer system. Poly(AN-co-EGDMA-co-VBC) is synthesized by using precipitation polymerization method and further hypercrosslinked by Friedel-Crafts reaction. FT-IR spectra of poly(AN-co-EGDMA-co-VBC) show that the absorption bands at ~1290 cm-1 that are assigned to the C-Cl vibrations are almost disappeared in hypercrosslinked (HXL) poly(AN-co-EGDMA-co-VBC) polymers, confirming that the hypercrosslinking reaction is successful. SEM images show that the morphologies of the polymers are retained through the hypercrosslinking reactions. Brunauer-Emmett-Teller (BET) analysis shows that hypercrosslinked polymers had a specific surface area up to 59 m2·g-1. The preliminary performance of the terpolymer adsorbent to capture polar analyte is evaluated by adsorbing salicylic acid and mefenamic acid from aqueous solution in a batch system. The maximum adsorption capacity of salicylic acid and mefenamic acid were up to 416.7 mg·g-1 and 625 mg·g-1, respectively, and the adsorption kinetic data obeyed pseudo-second-order rate equation.
Collapse
Affiliation(s)
- Nur Syafiqah Shaipulizan
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.S.S.); (S.K.); (N.N.S.S.); (A.H.A.)
| | - Siti Nurul Ain Md Jamil
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.S.S.); (S.K.); (N.N.S.S.); (A.H.A.)
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Sazlinda Kamaruzaman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.S.S.); (S.K.); (N.N.S.S.); (A.H.A.)
| | - Nur Nida Syamimi Subri
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.S.S.); (S.K.); (N.N.S.S.); (A.H.A.)
| | - Abel Adekanmi Adeyi
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (A.A.A.); (L.C.A.)
- Department of Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti, ABUAD, KM. 8.5, Afe Babalola Way, P.M.B. 5454, Ado-Ekiti 360211, Nigeria
| | - Abdul Halim Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.S.S.); (S.K.); (N.N.S.S.); (A.H.A.)
- Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (A.A.A.); (L.C.A.)
| |
Collapse
|
10
|
Adeyi AA, Jamil SNAM, Abdullah LC, Choong TSY, Lau KL, Abdullah M. Adsorptive Removal of Methylene Blue from Aquatic Environments Using Thiourea-Modified Poly(Acrylonitrile- co-Acrylic Acid). MATERIALS 2019; 12:ma12111734. [PMID: 31141981 PMCID: PMC6600694 DOI: 10.3390/ma12111734] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 12/07/2022]
Abstract
The paper evaluates the adsorptive potential of thiourea-modified poly(acrylonitrile-co-acrylic acid), (TA-poly(AN-co-AA)) for the uptake of cationic methylene blue (MB) from aquatic environments via a batch system. TA-poly(AN-co-AA) polymer was synthesized through redox polymerization and modified with thiourea (TA) where thioamide groups were introduced to the surface. Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), CHNS and Zetasizer were used to characterize the physico-chemical and morphological properties of prepared TA-poly(AN-co-AA). Afterwards, it was confirmed that incorporation of thioamide groups was successful. The adsorption kinetics and equilibrium adsorption data were best described, respectively, by a pseudo-second-order model and Freundlich model. Thermodynamic analysis showed the exothermic and spontaneous nature of MB uptake by TA-poly(AN-co-AA). The developed TA-poly(AN-co-AA) polymer demonstrated efficient separation of MB dye from the aqueous solution and maintained maximum adsorption capacity after five regeneration cycles. The findings of this study suggested that synthesized TA-poly(AN-co-AA) can be applied successfully to remove cationic dyes from aquatic environments.
Collapse
Affiliation(s)
- Abel Adekanmi Adeyi
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.
- Department of Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti, ABUAD, KM. 8.5, Afe Babalola Way, P.M.B. 5454, Ado-Ekiti, Ekiti State, Nigeria.
| | - Siti Nurul Ain Md Jamil
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.
| | - Thomas Shean Yaw Choong
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.
| | - Kia Li Lau
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.
| | - Mohammad Abdullah
- Faculty of Chemical Engineering, Universiti Teknologi Mara, Masai 81750, Johor darul Takzim, Malaysia.
| |
Collapse
|
11
|
Özdemir İ, Tekin N, Kara A. Magnetic porous polymer microspheres: Synthesis, characterization and adsorption performance for the removal of phenol. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1586445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- İnci Özdemir
- Property Protection and Security Department, Kocaeli University, Izmit Vocational School, Kocaeli, Turkey
| | - Nalan Tekin
- Science and Art Faculty, Department of Chemistry, Kocaeli University, Kocaeli, Turkey
| | - Ali Kara
- Science and Art Faculty, Department of Chemistry, Uludag University, Bursa, Turkey
| |
Collapse
|
12
|
Cegłowski M, Gierczyk B, Frankowski M, Popenda Ł. A new low-cost polymeric adsorbents with polyamine chelating groups for efficient removal of heavy metal ions from water solutions. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.07.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Ferreira VR, Azenha MA, Pereira CM, Fernando Silva A. Molecularly imprinted polymers for enhanced impregnation and controlled release of l-tyrosine. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Dolaksiz YE, Temel F, Tabakci M. Adsorption of phenolic compounds onto calix[4]arene-bonded silica gels from aqueous solutions. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|