1
|
Ozcelik E, Tabakci B, Karaman M, Tabakci M. Calixarene-Based Functional Fabric for Simultaneously Adsorptive Removal of Anionic and Cationic Dyes. ACS OMEGA 2025; 10:181-192. [PMID: 39829572 PMCID: PMC11740154 DOI: 10.1021/acsomega.4c04109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 01/22/2025]
Abstract
This study investigated the adsorptive properties of functionalized fabric containing dimethylaminomethyl calix[4]arene (DMAM-Calix) to remove anionic methyl orange (MO) and cationic Rhodamine B (RhB) dyes in aqueous media. Adsorption studies were performed using a filtration system packed with DMAM-Calix-functionalized fabric (DCF). The results revealed that the cationic and anionic structures work compatibly in a binary mixture medium. Hydrogen bonding, π-π, cation-π, n-π and electrostatic interactions between dye molecules and DMAM-Calix units of DCF were the main factors affecting the adsorption process. Experiments on real wastewater samples of unknown composition confirmed that the approach could successfully remove MO and RhB dyes from real water samples with high efficiency, especially for RhB. Isotherm and kinetic data for MO were mainly represented by the Langmuir model and pseudo-second-order kinetic model, respectively. The adsorption capacities of DCF were found to be about 4.7 mg g-1 for MO and 1.0 mg g-1 for RhB at pH 6.0, which were evaluated as satisfactory considering the first use of a calixarene-derived coated fabric as an adsorbent, the anionic-cationic dye selectivity of DCF, and the low cost and ease of application of the method.
Collapse
Affiliation(s)
- Egemen Ozcelik
- Department
of Chemical Engineering, Konya Technical
University, 42250 Konya, Türkiye
| | - Begum Tabakci
- Department
of Chemistry, Selçuk University, 42130 Konya, Türkiye
| | - Mustafa Karaman
- Department
of Chemical Engineering, Konya Technical
University, 42250 Konya, Türkiye
| | - Mustafa Tabakci
- Department
of Chemical Engineering, Konya Technical
University, 42250 Konya, Türkiye
| |
Collapse
|
2
|
Fouad OA, Adly YM, Hosny WM, Mohamed GG, Mostafa MR. Kinetics and process optimization studies for the effective removal of cresyl fast violet dye using reusable nanosized mullite. Sci Rep 2024; 14:32164. [PMID: 39741152 DOI: 10.1038/s41598-024-81653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/28/2024] [Indexed: 01/02/2025] Open
Abstract
The swift rise of hazardous dye effluent from diverse sectors continues to be a severe public health problem and a top priority for environmental preservation, presenting a significant obstacle to the current conventional water treatment systems. This study aims to develop an efficient and reusable approach for removing cresyl fast violet dye using mullite nanoparticles. Some factors such as pH, nano-mullite dosage, agitation speed, time, and others that affect the removal process were studied. The mullite nanoparticles' shape, particle size, pore diameters, and crystal phase structure are characterized using many techniques such as Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), transmission electron microscopy (TEM), Contact angle, Zeta potential, scanning electron microscope (SEM) as well as energy dispersive X-ray analysis (EDX). The optimal conditions were pH 7 and 600 rpm for 30 min at room temperature. Using statistical programs such as ANOVA and Design Expert, the dye removal parameters were modeled and optimized, where the removal percentage was about 99%. In addition, the experimental elimination process exceeded 90% after just 10 min. Langmuir, Freundlich, Dubinin-Kaganer-Raduskevich (DKR), and Temkin isotherm equations were examined to find the adsorption isotherm. The experimental data fits the pseudo-second-order model and the Freundlich isotherm. Thermodynamic investigations confirmed that the adsorption process was endothermic and spontaneous. The nano-mullite was employed for the removal process, and its recycling ability supports its economic benefits. It was found that the high percentage of elimination remained consistent for more than 3 cycles.
Collapse
Affiliation(s)
- Omar A Fouad
- Faculty of Science, Chemistry Department, Cairo University, Giza, 12613, Egypt.
| | - Yara M Adly
- Faculty of Science, Chemistry Department, Cairo University, Giza, 12613, Egypt
| | - Wafaa M Hosny
- Faculty of Science, Chemistry Department, Cairo University, Giza, 12613, Egypt
| | - Gehad G Mohamed
- Faculty of Science, Chemistry Department, Cairo University, Giza, 12613, Egypt
- Nanoscience Department, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El Arab, Alexandria, 21934, Egypt
| | - Maysa R Mostafa
- Faculty of Science, Chemistry Department, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
3
|
Adeyi AA, Ogundola DO, Popoola LT, Bernard E, Udeagbara SG, Ogunyemi AT, Olateju II, Zainul R. Potassium permanganate-modified eggshell biosorbent for the removal of diclofenac from liquid environment: adsorption performance, isotherm, kinetic, and thermodynamic analyses. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:802. [PMID: 39120741 DOI: 10.1007/s10661-024-12964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
This study assess how well diclofenac (DCF) can be separated from aqueous solution using potassium permanganate-modified eggshell biosorbent (MEB). The MEB produced was characterised using XRD, FTIR, and SEM. Batch experiments were conducted to examine and assess the impact of contact time, adsorbent dosage, initial concentration, and temperature on the adsorption capacity of the MEB in the DCF sequestration. The best parameters to obtained 95.64% DCF removal from liquid environment were 0.05 g MEB weight, 50 mg/L initial concentration, and 60 min contact time at room temperature. The maximum DCF sequestration capacity was found to be 159.57 mg/g with 0.05 g of MEB at 298 K. The adsorption isotherm data were more accurately predicted by the Freundlich model, indicating a process of heterogeneous multilayer adsorption. The results of the kinetic study indicated that the pseudo-second-order kinetic models best matched the experimental data. The findings revealed that the dynamic of DCF entrapment is largely chemisorption and diffusion controlled. Based on the values of thermodynamic parameters, the process is both spontaneous and endothermic. The primary processes of DCF sorption mechanism onto the MEB were chemical surface complexation, hydrogen bonding, π-π stacking, and electrostatic interactions. The produced MEB showed effective DCF separation from the aqueous solution and continued to have maximal adsorption capability even after five regeneration cycles. These findings suggest that MEB could be highly efficient adsorbent for the removal of DCF from pharmaceutical wastewater.
Collapse
Affiliation(s)
- Abel A Adeyi
- Department Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti, 360211, Ekiti State, Nigeria.
| | - Damilola O Ogundola
- Department Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti, 360211, Ekiti State, Nigeria
| | - Lekan T Popoola
- Department Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti, 360211, Ekiti State, Nigeria
| | - Esther Bernard
- Department of Chemical Engineering, Nasarawa State University Keffi (NSUK), PMB 1022, Keffi, Nigeria
| | - Stephen G Udeagbara
- Department Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti, 360211, Ekiti State, Nigeria
| | - Adebayo T Ogunyemi
- Department Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti, 360211, Ekiti State, Nigeria
| | - Idowu I Olateju
- Department Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti, 360211, Ekiti State, Nigeria
| | - Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Sumatera Barat, Indonesia
| |
Collapse
|
4
|
Alshahateet SF, Altarawneh RM, Al-Tawarh WM, Al-Trawneh SA, Al-Taweel S, Azzaoui K, Merzouki M, Sabbahi R, Hammouti B, Hanbali G, Jodeh S. Catalytic green synthesis of Tin(IV) oxide nanoparticles for phenolic compounds removal and molecular docking with EGFR tyrosine kinase. Sci Rep 2024; 14:6519. [PMID: 38499602 PMCID: PMC10948867 DOI: 10.1038/s41598-024-55460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
In this study, tin dioxide nanoparticles (SnO2 NPs) were successfully synthesized through an eco-friendly method using basil leaves extract. The fabricated SnO2 NPs demonstrated significant adsorption capabilities for phenol (PHE), p-nitrophenol (P-NP), and p-methoxyphenol (P-MP) from water matrices. Optimal conditions for maximum removal efficiency was determined for each phenolic compound, with PHE showing a remarkable 95% removal at a 3 ppm, 0.20 g of SnO2 NPs, pH 8, and 30 min of agitation at 35 °C. Molecular docking studies unveiled a potential anticancer mechanism, indicating the ability of SnO2 NPs to interact with the epidermal growth factor receptor tyrosine kinase domain and inhibit its activity. The adsorption processes followed pseudo-second order kinetics and Temkin isotherm model, revealing spontaneous, exothermic, and chemisorption-controlled mechanisms. This eco-friendly approach utilizing plant extracts was considered as a valuable tool for nano-sorbent production. The SnO2 NPs not only exhibit promise in water treatment and also demonstrate potential applications in cancer therapy. Characterization techniques including scanning electron microscopy, UV-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy (XRD), and energy-dispersive X-ray spectroscopy (EDAX) provided comprehensive insights into the results.
Collapse
Affiliation(s)
- S F Alshahateet
- Department of Chemistry, Faculty of Science, Mutah University, Al-Karak, Jordan.
| | - R M Altarawneh
- Department of Chemistry, Faculty of Science, Mutah University, Al-Karak, Jordan
| | - W M Al-Tawarh
- Department of Chemistry, Faculty of Science, Mutah University, Al-Karak, Jordan
| | - S A Al-Trawneh
- Department of Chemistry, Faculty of Science, Mutah University, Al-Karak, Jordan
| | - S Al-Taweel
- Department of Chemistry, Faculty of Science, Mutah University, Al-Karak, Jordan
| | - K Azzaoui
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, 30000, Fez, Morocco
- Euro-Mediterranean University of Fes, BP 15, 30070, Fez, Morocco
| | - M Merzouki
- Morocco Laboratory of Applied Chemistry and Environment (LCAE) Team (ECOMP), Mohamed 1er University, Oujda, Morocco
| | - R Sabbahi
- Euro-Mediterranean University of Fes, BP 15, 30070, Fez, Morocco
- Higher School of Technology, Ibn Zohr University, P.O. Box 3007, Laayoune, Morocco
| | - B Hammouti
- Euro-Mediterranean University of Fes, BP 15, 30070, Fez, Morocco
| | - G Hanbali
- Department of Chemistry, An-Najah National University, Nablus, Palestine
| | - S Jodeh
- Department of Chemistry, An-Najah National University, Nablus, Palestine.
| |
Collapse
|
5
|
Kara G, Temel F, Özaytekin İ. Methylene blue removal using modified poly(glycidyl methacrylate) as a low-cost sorbent in batch mode: kinetic and equilibrium studies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:141. [PMID: 38212476 DOI: 10.1007/s10661-023-12275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
Industrial textile wastewater contains large amounts of cationic dye material. Therefore, a new adsorbent was synthesized as modified poly(glycidyl methacrylate) (mPGMA) with a fluorine group-containing compound 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). mPGMA was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FTIR). The proposed adsorbent has been used to remove methylene blue (MB) from aqueous solutions by the adsorption process. In further experiments, the removal efficiency of adsorbent in both powder (˂600 μm) and granular form was compared from aqueous solutions by adsorption process. Furthermore, the effects of changing parameters such as adsorbent dosage, contact time, pH, temperature, and initial dye concentration on methylene blue adsorption were investigated. Also, Langmuir, Freundlich, and Temkin isotherms have been used to describe the equilibrium characteristics of adsorption. Finally, the experimental data fitted well by Langmuir isotherm with a maximum adsorption capacity of 17.5 mg g-1. The experimental data were applied to pseudo-first- and second-order models. The experimental results were better fitted for the pseudo-second-order model than the other model. Consequently, the experimental results showed that mPGMA is a suitable low-cost adsorbent with great potential benefit in removing methylene blue from aqueous solutions.
Collapse
Affiliation(s)
- Gülnihal Kara
- Department of Environmental Engineering, Konya Technical University, 42130, Konya, Turkey.
| | - Farabi Temel
- Department of Chemical Engineering, Konya Technical University, 42130, Konya, Turkey
| | - İlkay Özaytekin
- Department of Chemical Engineering, Konya Technical University, 42130, Konya, Turkey
| |
Collapse
|
6
|
Zhou Y, Zhang X, Deng J, Li C, Sun K, Luo X, Yuan S. Adsorption and mechanism study for phenol removal by 10% CO 2 activated bio-char after acid or alkali pretreatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119317. [PMID: 37857218 DOI: 10.1016/j.jenvman.2023.119317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
The development of an efficient bio-char used to remove phenol from wastewater holds great importance for environmental protection. In this work, wheat straw bio-char (BC) was acid-washed by HF and activated at 900 °C with 10% CO2 to obtain bio-char (B-Ⅲ-0.1D900). Adsorption experiments revealed that B-Ⅲ-0.1D900 achieved a remarkable phenol removal efficiency of 90% within 40 min. Despite its relatively low specific surface area of 492.60 m2/g, it exhibited a high maximum adsorption capacity of 471.16 mg/g. Furthermore, B-Ⅲ-0.1D900 demonstrated a good regeneration capacity for at least three cycles (90.71%, 87.54%, 84.36%). It has been discovered that HF washing, which removes AAEM and exposes unsaturated functional groups, constitutes one of the essential prerequisites for enhancing CO2 activation efficiency at high temperatures. After 10% CO2 activation, the mesoporous structure exhibited substantial development, facilitating enhanced phenol infiltration into the pores when compared to untreated BC. The increased branching of the bio-char culminated in a more complete aromatic system, which enhances the π-π forces between the bio-char and the phenol. The presence of tertiary alcohol structure enhances the hydrogen bonding forces, thereby promoting intermolecular multilayer adsorption of phenol. With the combination of various forces, B-Ⅲ-0.1D900 has a good removal capacity for phenol. This work provides valuable insights into the adsorption of organic pollutants using activated bio-char.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Xiaoguo Zhang
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Jin Deng
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Chun Li
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Keyuan Sun
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Xiaodong Luo
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Shenfu Yuan
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China.
| |
Collapse
|
7
|
Dursun S. Removal of cationic dye pollutants from wastewater with HS loaded semi-IPN composites: kinetic and thermodynamic studies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:27. [PMID: 38063933 DOI: 10.1007/s10661-023-12207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
In this study, methylene blue (MB) pollutant in water was removed using produced hazelnut shell loaded semi-interpenetrating polymer networks (HS loaded semi-IPN) adsorbent. The physical and chemical characterizations of the adsorbents were investigated using TGA, DSC, FT-IR, BET, FE-SEM, and EDX. Experimental parameters such as temperature, swelling, dye concentration, contact time, pH solution, and adsorbent dosage for MB adsorption were thoroughly investigated. It was determined that the HS loaded semi-IPN adsorbent removed 92.1% of MB dye. Subsequently, the adsorption properties between the adsorbent and dye were investigated in detail using several different kinetic, isotherm, and thermodynamic models. As a result of the obtained data, the interaction between adsorbent and dye molecules is discussed. Moreover, studies on the industrial usability of the adsorbent have been carried out, and it has been observed that the adsorbent can be employed even after four cycles.
Collapse
Affiliation(s)
- Sami Dursun
- Deparment of Metallurgical and Materials Engineering, Konya Technical University, Selçuklu, 42130, Konya, Turkey.
| |
Collapse
|
8
|
Grace Pavithra K, Sundar Rajan P, Arun J, Brindhadevi K, Hoang Le Q, Pugazhendhi A. A review on recent advancements in extraction, removal and recovery of phenols from phenolic wastewater: Challenges and future outlook. ENVIRONMENTAL RESEARCH 2023; 237:117005. [PMID: 37669733 DOI: 10.1016/j.envres.2023.117005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
Water pollution is the major problem seen in today's scenario and even pollutants at low concentration harms our environment. In industrial sector usage of phenol is seen even at low concentrations. The interaction of phenol in the environment provides adverse effects to living beings. This review focuses on the toxicity of phenol and its impact towards environment and human health. The treatment techniques such as distillation, extraction, wet air oxidation, membrane process, electrochemical oxidation, biological treatment and finally adsorption techniques were discussed. Among many treatment techniques so far utilized in the treatment of phenol, adsorption was considered as one of the best technique due to its advantages such as reusability, ease in operation, large availability etc., This review also highlights the adsorption technique for the cleaner removal of phenol from aqueous solution with novel as well as low-cost adsorbents in the removal of phenolic compounds. This review also discusses about the drawbacks and issues related with adsorption of phenolic compounds.
Collapse
Affiliation(s)
| | - Panneerselvam Sundar Rajan
- Department of Chemical Engineering, Saveetha Engineering College, Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Jayaseelan Arun
- Centre for Waste Management - 'International Research Centre', Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai - 600119, Tamil Nadu, India
| | - Kathirvel Brindhadevi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali-140103, India
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
9
|
Ray J, Tripathy T. Dextrin‐graft‐
poly
(2‐dimethylamino ethyl acrylate‐
co
‐2‐acrylamido‐2‐methyl propane sulfonic acid) polymer: A potential adsorbent for the fast removal of nitrophenols from aqueous medium. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jagabandhu Ray
- Postgraduate Division of Chemistry Midnapore College (Autonomous) Midnapore India
| | - Tridib Tripathy
- Postgraduate Division of Chemistry Midnapore College (Autonomous) Midnapore India
| |
Collapse
|
10
|
Hokmabadi F, Zadmard R, Jalali MR, Abaee MS. Synthesis and characterization of a new reusable calix[4]arene-bonded silica gel sorbent for antidiabetic drugs. RSC Adv 2022; 12:25123-25132. [PMID: 36199337 PMCID: PMC9443680 DOI: 10.1039/d2ra04530c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
A novel calix[4]arene-bonded silica gel (C4BS) is prepared by covalent attachment of a calix[4]arene derivative to silica gel through a thiol–ene process. The structure and properties of C4BS were studied by Fourier Transform Infra-Red (FTIR) spectroscopy, thermal gravimetric analysis (TGA), elemental analysis (CHN), scanning electron microscopy (SEM), and surface area analysis (BET). In addition, the binding affinity of some antidiabetic drugs towards C4BS was investigated, by quantitative measurement of the drugs in aqueous solution using UV-visible spectroscopy. Results showed that C4BS has higher affinities than plain silica gel for binding to empagliflozin, dapagliflozin and linagliptin at neutral pH, while metformin hydrochloride was not adsorbed efficiently using either C4BS or plain silica gel. Thus, C4BS can be introduced as a promising binder for selective adsorption of the quoted antidiabetic drugs in pharmaceutical effluents, while being reusable by aqueous/acetonitrile (1 : 1) extraction. C4BS is a new reusable calix[4]arene-bonded silica gel adsorbent for dapagliflozin (DAPA), empagliflozin (EMPA) and linagliptin (LINA) as antidiabetic drugs.![]()
Collapse
Affiliation(s)
- Fahimeh Hokmabadi
- Department of Organic Chemistry, Chemistry and Chemical Engineering Research Center of Iran, P. O. Box 14335-186, Tehran, Iran
| | - Reza Zadmard
- Department of Organic Chemistry, Chemistry and Chemical Engineering Research Center of Iran, P. O. Box 14335-186, Tehran, Iran
| | - Mohammad Reza Jalali
- Department of Organic Chemistry, Chemistry and Chemical Engineering Research Center of Iran, P. O. Box 14335-186, Tehran, Iran
| | - M. Saeed Abaee
- Department of Organic Chemistry, Chemistry and Chemical Engineering Research Center of Iran, P. O. Box 14335-186, Tehran, Iran
| |
Collapse
|
11
|
Mohammad Alwi M, Normaya E, Ismail H, Iqbal A, Mat Piah B, Abu Samah MA, Ahmad MN. Two-Dimensional Infrared Correlation Spectroscopy, Conductor-like Screening Model for Real Solvents, and Density Functional Theory Study on the Adsorption Mechanism of Polyvinylpolypyrrolidone for Effective Phenol Removal in an Aqueous Medium. ACS OMEGA 2021; 6:25179-25192. [PMID: 34632177 PMCID: PMC8495713 DOI: 10.1021/acsomega.1c02699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The discharge of industrial effluents, such as phenol, into aquatic and soil environments is a global problem due to its serious negative impacts on human health and aquatic ecosystems. In this study, the ability of polyvinylpolypyrrolidone (PVPP) to remove phenol from an aqueous medium was investigated. The results showed that a significant proportion of phenol (up to 74.91%) was removed using PVPP at pH 6.5. Isotherm adsorption experiments of phenol on PVPP indicated that the best-fit adsorption was obtained using Langmuir models. The response peaks of the hydroxyl groups of phenol (OH) and the carboxyl groups (i.e., C=O) of PVPP were altered, indicating the formation of a hydrogen bond between the PVPP and phenol during phenol removal, as characterized using 1D and 2D IR spectroscopy. The resulting complexes were successfully characterized based on their thermodynamic properties, Mulliken charge, and electronic transition using the DFT approach. To clarify the types of interactions taking place in the complex systems, quantum theory of atoms in molecules (QTAIM) analysis, reduced density gradient noncovalent interaction (RDG-NCI) approach, and conductor-like screening model for real solvents (COSMO-RS) approach were also successfully calculated. The results showed that the interactions that occurred in the process of removing phenol by PVPP were through hydrogen bonding (based on RDG-NCI and COSMO-RS), which was identified as an intermediate type (∇2ρ(r) > 0 and H < 0, QTAIM). To gain a deeper understanding of how these interactions occurred, further characterization was performed based on adsorption mechanisms using molecular electrostatic potential, global reactivity, and local reactivity descriptors. The results showed that during hydrogen bond formation, PVPP acts as a nucleophile, whereas phenol acts as an electrophile and the O9 atom (i.e., donor electron) reacts with the H22 atom (i.e., acceptor electron).
Collapse
Affiliation(s)
- Muhammad
Ammar Mohammad Alwi
- Experimental
and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Erna Normaya
- Experimental
and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
- River
of Life (ROL) Kuantan Chapter, International
Islamic University of Malaysia, 25200 Kuantan, Pahang, Malaysia
- Innovative
Toyyib Environment Minds (ITEMS), International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Hakimah Ismail
- Experimental
and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Anwar Iqbal
- School
of Chemical Science, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Bijarimi Mat Piah
- Faculty
of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia
| | - Mohd Armi Abu Samah
- Experimental
and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
- River
of Life (ROL) Kuantan Chapter, International
Islamic University of Malaysia, 25200 Kuantan, Pahang, Malaysia
- Innovative
Toyyib Environment Minds (ITEMS), International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Mohammad Norazmi Ahmad
- Experimental
and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
- River
of Life (ROL) Kuantan Chapter, International
Islamic University of Malaysia, 25200 Kuantan, Pahang, Malaysia
- Innovative
Toyyib Environment Minds (ITEMS), International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
- Drug and
Poison Call Centre, IIUM Poison Centre, International Islamic University of Malaysia, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
12
|
Ozcelik E, Mercan ES, Erdemir S, Karaman M, Tabakci M. Calixarene-tethered textile fabric for the efficient removal of hexavalent chromium from polluted water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Soo JW, Abdullah LC, Jamil SNAM, Adeyi AA. Sequestration of p-nitrophenol from liquid phase by poly(acrylonitrile-co-acrylic acid) containing thioamide group. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:237-250. [PMID: 34280167 DOI: 10.2166/wst.2021.204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, the adsorptive performance of synthesized thiourea (TU) modified poly(acrylonitrile-co-acrylic acid) (TU-P(AN-co-AA)) polymeric adsorbent for capturing p-nitrophenol (PNP) from aqueous solution was investigated. TU-P(AN-co-AA) was synthesized via the redox polymerization method with acrylonitrile (AN) and acrylic acid (AA) as the monomers, then modified chemically with thiourea (TU). Characterization analysis with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), elemental microanalysis for CHNS, zeta potential measurement, Brunauer-Emmett-Teller (BET) surface analysis and thermal analyses were carried out to determine the morphology and physico-chemical properties of the synthesized polymer. The characterization results indicated successful surface modification of polymer with TU. The performance of TU-P(AN-co-AA) for the removal of PNP was investigated under various experimental parameters (adsorbent dosage, initial adsorbate concentration, contact time and temperature). The results demonstrated that the Freundlich isotherm model and pseudo-second-order kinetic model best described the equilibrium and kinetic data, respectively. Thermodynamic studies showed that the uptake of PNP by TU-P(AN-co-AA) was spontaneous and exothermic in nature. The results of the regeneration studies suggested that the TU-P(AN-co-AA) polymer is a reusable adsorbent with great potential for removing PNP from wastewater.
Collapse
Affiliation(s)
- J W Soo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - L C Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - S N A M Jamil
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - A A Adeyi
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; Department Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti, Ekiti State 360211, Nigeria
| |
Collapse
|
14
|
Beh SY, Md Saleh N, Asman S. Surfactant-functionalised magnetic ferum oxide coupled with high performance liquid chromatography for the extraction of phenol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:607-619. [PMID: 33480366 DOI: 10.1039/d0ay02166k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The usage of phenols in the marketplace has been increasing tremendously, which has raised concerns about their toxicity and potential effect as emerging pollutants. Phenol's structure has closely bonded phenyl and hydroxy groups, thereby making its functional characteristics closely similar to that of alcohol. As a result, phenol is used as a base compound for commercial home-based products. Hence, a simple and efficient procedure is required to determine the low concentration of phenols in environmental water samples. In this research, a method of combining magnetic nanoparticles (MNPs) with surfactant Sylgard 309 was developed to overcome the drawbacks in the classical extraction methods. In addition, this developed method improved the performance of extraction when MNPs and the surfactant Sylgard 309 were used separately, as reported in the previous research. This MNP-Sylgard 309 was synthesised by the coprecipitation method and attracts phenolic compounds in environmental water samples. Response surface methodology was used to study the parameters and responses in order to obtain an optimised condition using MNP-Sylgard 309. The parameters included the effect of pH, extraction time, and concentration of the analyte. Meanwhile, the responses measured were the peak area of the chromatogram and the percentage recovery. From this study, the results of the optimum conditions for extraction using MNP-Sylgard 309 were pH 7, extraction time of 20 min, and analyte concentration of 10.0 μg mL-1. Under the optimized conditions, MNP-Sylgard 309 showed a low limit of detection of 0.665 μg mL-1 and the limit of quantification was about 2.219 μg mL-1. MNP-Sylgard 309 was successfully applied on environmental water samples such as lake and river water. High recovery (76.23%-110.23%) was obtained.
Collapse
Affiliation(s)
- Shiuan Yih Beh
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, The National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia.
| | | | | |
Collapse
|
15
|
Kutluay S, Temel F. Silica gel based new adsorbent having enhanced VOC dynamic adsorption/desorption performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125848] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Balbino TAC, Bellato CR, da Silva AD, Marques Neto JDO, Guimarães LDM. Magnetic cross-linked chitosan modified with ethylenediamine and β-cyclodextrin for removal of phenolic compounds. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Zadmard R, Hokmabadi F, Jalali MR, Akbarzadeh A. Recent progress to construct calixarene-based polymers using covalent bonds: synthesis and applications. RSC Adv 2020; 10:32690-32722. [PMID: 35516464 PMCID: PMC9056661 DOI: 10.1039/d0ra05707j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
The combination of supramolecular chemistry and polymer sciences creates a great possibility to afford calixarene-based polymers offering unique features and applications. The enhancement of calixarene's versatility in this manner has made chemists better able to achieve different objectives in host-guest chemistry. The calixarene-based polymers can be divided into covalent polymers and supramolecular polymers regarding the interactions. Although there are several studies available on the calixarene-based supramolecular polymers, there is a paucity of studies on the calixarene-based covalent polymers. In this paper, the most recent developments and applications of the calixarene-based covalent polymers in the last two decades have been reviewed. We have particularly focused on the polymers, including those where the calixarene molecules have been used as macromonomers and polymerize through covalent bonds. Moreover, covalent polymers or solid supports functionalized with calixarenes are highlighted as well.
Collapse
Affiliation(s)
- Reza Zadmard
- Chemistry and Chemical Engineering Research Center of Iran Iran
| | | | | | - Ali Akbarzadeh
- Chemistry and Chemical Engineering Research Center of Iran Iran
| |
Collapse
|
18
|
|
19
|
High-Performance Adsorption of 4-Nitrophenol onto Calix[6]arene-Tethered Silica from Aqueous Solutions. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01571-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Synthesis of silica nanoparticles grafted with copolymer of acrylic acrylamide for ultra-removal of methylene blue from aquatic solutions. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109698] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Removal of methylene blue from aqueous solutions by silica gel supported calix[4]arene cage: Investigation of adsorption properties. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109540] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Temel F. One novel calix[4]arene based QCM sensor for sensitive, selective and high performance-sensing of formaldehyde at room temperature. Talanta 2020; 211:120725. [PMID: 32070583 DOI: 10.1016/j.talanta.2020.120725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
This work designs the synthesis of a novel amino morpholine schiff base functionalized calix[4]arene cage (SCC), its deposition onto Quartz Crystal Microbalance (QCM) crystal surface, and usage for the selective detecting of formaldehyde (HCHO). The SCC modified QCM sensor has been characterized by contact angle measurements and microscopy images. Initial experiments revealed that the frequency response decreased significantly which means that there was a good interaction between the SCC molecules and HCHO. The proposed sensor exhibited a linear response towards HCHO in different concentrations ranging from 1.85 to 9.25 ppm, having the high sensitivity (S) and low limit of detection (LOD) being 18.324 Hz/ppm and 0.67 ppm, respectively. Furthermore, the adsorption behavior and mechanism of HCHO onto the QCM sensor were investigated for this sensing system and the adsorption data exhibited a good correlation with the Freundlich and Langmuir-Freundlich adsorption models in terms of the regression coefficient. The QCM sensor showed outstanding selective performance to HCHO among %97 RH and some a number of interfering volatile organic compounds (VOCs) such as chloroform, dichloromethane, acetone, n-hexane, methanol, xylene, and ammonia. Thus, real-time, sensitive, selective and effective recognition of HCHO by the sensor can be explained some adsorption mechanisms such as size-fit concept, three-dimensional structures of molecules and interaction between moieties of the sensible film layer and analyte molecules such as hydrogen bonding interactions.
Collapse
Affiliation(s)
- Farabi Temel
- Konya Technical University, Department of Chemical Engineering, 42130, Konya, Turkey.
| |
Collapse
|
23
|
Temel F, Kutluay S. Investigation of high-performance adsorption for benzene and toluene vapors by calix[4]arene based organosilica (CBOS). NEW J CHEM 2020. [DOI: 10.1039/d0nj02081h] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Calix[4]arene based organosilica (CBOS) was successfully prepared, characterized, and used for the adsorption of benzene and toluene vapors for the first time. The benzene and toluene vapor uptake of CBOS was determined to be 606 and 672 mg g−1, respectively.
Collapse
Affiliation(s)
- Farabi Temel
- Konya Technical University, Department of Chemical Engineering
- Konya
- Turkey
| | - Sinan Kutluay
- Department of Chemical Engineering
- Siirt University
- Siirt
- Turkey
| |
Collapse
|
24
|
Temel F. Real-time and selective recognition of erythromycin by self-assembly of calix[4]arene on QCM sensor. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Ba Mohammed B, Yamni K, Tijani N, Alrashdi AA, Zouihri H, Dehmani Y, Chung IM, Kim SH, Lgaz H. Adsorptive removal of phenol using faujasite-type Y zeolite: Adsorption isotherms, kinetics and grand canonical Monte Carlo simulation studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111997] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Ariffin MM, Azmi AHM, Saleh NM, Mohamad S, Rozi SKM. Surfactant functionalisation of magnetic nanoparticles: A greener method for parabens determination in water samples by using magnetic solid phase extraction. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
A novel triazine‒bearing calix[4]arene: Design, synthesis and gas sensing affinity for volatile organic compounds. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Bilgiç A, Çimen A. Removal of chromium(vi) from polluted wastewater by chemical modification of silica gel with 4-acetyl-3-hydroxyaniline. RSC Adv 2019; 9:37403-37414. [PMID: 35542280 PMCID: PMC9075511 DOI: 10.1039/c9ra05810a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/02/2019] [Indexed: 11/21/2022] Open
Abstract
In the current study, a new adsorbent that is insoluble in water and many acid solutions and has a high adsorption capacity for Cr(vi) metal ions was synthesized. In the synthesis process, 3-chloropropyl-trimethoxysilane (CPTS) was first modified on a silica gel (Si) surface. Secondly, 4-acetyl-3-hydroxyaniline (AHAP) was immobilized on the modified silica gel compound (Si-CPTS). As a result of the immobilization process, a new adsorbent compound named Si-CPTS-AHAP (silica gel-3-chloropropyltrimethoxy silane 4-acetyl-3-hydroxyaniline) was obtained, which was used to separate Cr(vi) ions from aqueous solution (K2Cr2O7) and industrial wastewater. The material was characterized using scanning electron microscopy and Fourier-transform infrared spectroscopy. The amount of chromium adsorbed was detected by ultraviolet-visible spectroscopy. The adsorption was evaluated using batch methods. The effects of temperature, pH, concentration, adsorbent amount and interaction time on the adsorption of Si-CPTS-AHAP were also investigated. The adsorption of Cr(vi) ions on Si-CPTS-AHAP was investigated via adsorption kinetics, isotherm and thermodynamic studies. The value of the isotherm parameters and the highest adsorption yields were calculated from the Dubinin–Radushkevich, Freundlich and Langmuir isotherm equations. Thermodynamic features such as entropy (ΔS), enthalpy (ΔH) and free energy (ΔG) were also calculated from the experimental results. The experimental results showed that the best recoveries of Cr(vi) metal ions are under the conditions of 180 min (interaction time), 0.05 g (adsorbent amount) and 323.15 K (temperature) at pH 2. Si-CPTS-AHAP can be used for the removal of poisonous pollutants in wastewater. Use of a newly synthesized Si-CPTS-AHAP adsorbent in the removal of Cr(vi) ions in wastewater treatment systems may potentially lead to low cost and highly efficient heavy metal removal.![]()
Collapse
Affiliation(s)
- Ali Bilgiç
- Faculty of Kamil Özdağ Science
- Department of Chemistry
- Karamanoğlu Mehmetbey University
- Turkey
| | - Aysel Çimen
- Faculty of Kamil Özdağ Science
- Department of Chemistry
- Karamanoğlu Mehmetbey University
- Turkey
| |
Collapse
|