1
|
Zhang HJ, Shang XB, Wang XR, Zhang CX, Wang QL. Anchoring of Fe-MIL-101-NH 2 to the Polymer Membrane Matrix through the Hinsberg Reaction to Promote Conductivity of SPEEK Membranes. J Phys Chem B 2024; 128:3499-3507. [PMID: 38546038 DOI: 10.1021/acs.jpcb.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
SCPEEK@MOF proton exchange membranes, where SCPEEK is sulfinyl chloride polyether ether ketone and MOF is a metal-organic framework, were prepared by doping Fe-MIL-101-NH2 into polymers. The amino group in the MOF and the -SOCl2 group in thionyl chloride polyether ether ketone cross-link to form a covalent bond through the Hinsberg reaction, and the prepared composite membrane has stronger stability than other electrostatic interactions and simple physical doping composite membranes. The formation of covalent bonds improves the water absorption of the composite membrane, which makes it easy for water molecules to form hydrogen bonds. Moreover, SPEEK as a proton conductive polymer and the synergy of MOFs improve the proton conductivity of composite membranes. The composite membranes were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and atomic force microscopy. The swelling rate, water absorption, mechanical stability, ion exchange capacity, and proton conductivity of the pure sulfonated polyether ether ketone (SPEEK) membrane were compared with those of the mechanically doped SPEEK/MOF membrane and the composite membrane SCPEEK@MOF doped with different ratios of Fe-MIL-101-NH2, and all of the SCPEEK@MOF showed superior performance. When the Fe-MIL-101-NH2 loading rate of the composite membrane is 2%, the proton conductivity of the composite membrane can reach 0.202 S cm-1 at 363 K and a 98% relative humidity, which is much higher than that of the SPEEK/MOF membrane obtained by simple physical doping under the same conditions.
Collapse
Affiliation(s)
- Hong-Jie Zhang
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xue-Bin Shang
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xu-Ran Wang
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Chen-Xi Zhang
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qing-Lun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
2
|
Luan TX, Zhang P, Wang Q, Xiao X, Feng Y, Yuan S, Li PZ, Xu Q. "All in One" Strategy for Achieving Superprotonic Conductivity by Incorporating Strong Acids into a Robust Imidazole-Linked Covalent Organic Framework. NANO LETTERS 2024. [PMID: 38603798 DOI: 10.1021/acs.nanolett.4c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The fabrication of solid-state proton-conducting electrolytes possessing both high performance and long-life reusability is significant but challenging. An "all-in-one" composite, H3PO4@PyTFB-1-SO3H, including imidazole, sulfonic acid, and phosphoric acid, which are essential for proton conduction, was successfully prepared by chemical post-modification and physical loading in the rationally pre-synthesized imidazole-based nanoporous covalent organic framework (COF), PyTFB-1. The resultant H3PO4@PyTFB-1-SO3H exhibits superhigh proton conductivity with its value even highly up to 1.15 × 10-1 S cm-1 at 353 K and 98% relative humidity (RH), making it one of the highest COF-based composites reported so far under the same conditions. Experimental studies and theoretical calculations further confirmed that the imidazole and sulfonic acid groups have strong interactions with the H3PO4 molecules and the synergistic effect of these three groups dramatically improves the proton conductivity properties of H3PO4@PyTFB-1-SO3H. This work demonstrated that by aggregating multiple proton carriers into one composite, effective proton-conducting electrolyte can be feasibly achieved.
Collapse
Affiliation(s)
- Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Inter-disciplinary Science, Shandong University, Ji'nan 250100, Shandong Province, China
| | - Pengtu Zhang
- School of Chemical Engineering, Shandong Institute of Pertroleum and Chemical Technology, Dongying 257061, Shandong Province, China
| | - Qiurong Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Inter-disciplinary Science, Shandong University, Ji'nan 250100, Shandong Province, China
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong Province, China
| | - Yijing Feng
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Inter-disciplinary Science, Shandong University, Ji'nan 250100, Shandong Province, China
| | - Shiling Yuan
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Inter-disciplinary Science, Shandong University, Ji'nan 250100, Shandong Province, China
- School of Chemical Engineering, Shandong Institute of Pertroleum and Chemical Technology, Dongying 257061, Shandong Province, China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Inter-disciplinary Science, Shandong University, Ji'nan 250100, Shandong Province, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong Province, China
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Javed A, Palafox Gonzalez P, Thangadurai V. A Critical Review of Electrolytes for Advanced Low- and High-Temperature Polymer Electrolyte Membrane Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37326582 DOI: 10.1021/acsami.3c02635] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the 21st century, proton exchange membrane fuel cells (PEMFCs) represent a promising source of power generation due to their high efficiency compared with coal combustion engines and eco-friendly design. Proton exchange membranes (PEMs), being the critical component of PEMFCs, determine their overall performance. Perfluorosulfonic acid (PFSA) based Nafion and nonfluorinated-based polybenzimidazole (PBI) membranes are commonly used for low- and high-temperature PEMFCs, respectively. However, these membranes have some drawbacks such as high cost, fuel crossover, and reduction in proton conductivity at high temperatures for commercialization. Here, we report the requirements of functional properties of PEMs for PEMFCs, the proton conduction mechanism, and the challenges which hinder their commercial adaptation. Recent research efforts have been focused on the modifications of PEMs by composite materials to overcome their drawbacks such as stability and proton conductivity. We discuss some current developments in membranes for PEMFCs with special emphasis on hybrid membranes based on Nafion, PBI, and other nonfluorinated proton conducting membranes prepared through the incorporation of different inorganic, organic, and hybrid fillers.
Collapse
Affiliation(s)
- Aroosa Javed
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
4
|
Guo H, Li Z, Pei H, Sun P, Zhang L, Li P, Yin X. Stable branched polybenzimidazole high temperature proton exchange membrane: Crosslinking and pentaphosphonic-acid doping lower fuel permeability and enhanced proton transport. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Liu SS, Liu QQ, Huang SZ, Zhang C, Dong XY, Zang SQ. Sulfonic and phosphonic porous solids as proton conductors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214241] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Abstract
As the world’s transportation is seeking to switch towards renewable and sustainable sources of energy, the research in fuel cell technology has gained momentum. Proton exchange membrane fuel cell (PEMFC) operating at temperature range 100–200°C (high-temperature proton exchange membrane fuel cells, HT-PEMFCs) has gained interest in their major application to electric power generation. The most promising material is polybenzimidazoles (PBI). Synthesis methods such as condensation polymerization, solid-state or melt polymerization, etc. give the polymer with different inherent viscosity. The monomer modifications both in tetramine and the diacid, reveal variations in glass transition value. Further insight into the membrane casting solvents and methods along with its proton conductivity has been reviewed. Review paper is comprising of Part 1: for the synthesis methods, structural changes, and applications of PBIs in HT-PEMFCs while, Part 2: for the various kinds of PBIs has been discussed.[Formula: see text]
Collapse
|
7
|
Wang Y, Sun P, Li Z, Guo H, Pei H, Yin X. High performance polymer electrolyte membrane with efficient proton pathway over a wide humidity range and effective cross-linking network. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Li G, Kujawski W, Rynkowska E. Advancements in proton exchange membranes for high-performance high-temperature proton exchange membrane fuel cells (HT-PEMFC). REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The high-temperature proton exchange membrane fuel cell (HT-PEMFC) offers several advantages, such as high proton conductivity, high CO tolerance, good chemical/thermal stability, good mechanical properties, and low cost. The proton exchange membrane (PEM) is the critical component of HT-PEMFC. This work discusses the methods of current PEMs development for HT-PEMFC including modifications of Nafion® membranes and the advancement in composite PEMs based on non-fluorinated polymers. The modified Nafion®-based membranes can be used at temperatures up to 140 °C. Nevertheless, the application of Nafion®-based membranes is limited by their humidification with water molecules acting as proton carriers and, thus, by the operation conditions of membranes under a relative humidity below 20%. To obtain PEMs applied at higher temperatures under non-humidified conditions, phosphoric acid (PA) or ionic liquids (ILs) are used as proton carriers in PEMs based on non-fluorinated polymers. The research discussed in this work provides the approaches to improving the physicochemical properties and performance fuel cell of PEMs. The effects of polymer blending, crosslinking, and the incorporation of inorganic particles on the membrane properties and fuel cell performance have been scrutinized. The incorporation of inorganic particles modified with ILs might be an effective approach to designing high-performance PEMs for HT-PEMFC.
Collapse
Affiliation(s)
- Guoqiang Li
- Nicolaus Copernicus University in Toruń , Faculty of Chemistry , 7, Gagarina Street , 87-100 Toruń , Poland
| | - Wojciech Kujawski
- Nicolaus Copernicus University in Toruń , Faculty of Chemistry , 7, Gagarina Street , 87-100 Toruń , Poland
- National Research Nuclear University MEPhI , 31, Kashira Hwy , Moscow 115409, Russia
| | - Edyta Rynkowska
- Nicolaus Copernicus University in Toruń , Faculty of Chemistry , 7, Gagarina Street , 87-100 Toruń , Poland
| |
Collapse
|
9
|
Jin J, Zhao J, Shen S, Yu J, Cheng S, Pan B, Che Q. Constructing anhydrous proton exchange membranes based on cadmium telluride nanocrystal-doped sulfonated poly(ether ether ketone)/polyurethane composites. NANOTECHNOLOGY 2020; 31:205707. [PMID: 32000158 DOI: 10.1088/1361-6528/ab71b5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cadmium telluride (CdTe) nanocrystals with thiol stabilizers have been applied widely in the fields of energy storage and transformation. The aim of this work is to develop anhydrous proton exchange membranes (PEMs) by introducing CdTe nanocrystals bearing thioglycolic acid (tga) or mercaptopropionic acid (mpa) stabilizers into sulfonated poly(ether ether ketone) (SPEEK) and polyurethane (PU) systems. In the prepared SPEEK/PU/CdTe membranes, CdTe nanocrystals could provide desirable properties such as improving mechanical strength and enhancing proton conductivity by combining with phosphoric acid (PA) molecules. Successful preparation of SPEEK/PU/CdTe/PA membranes was demonstrated by the identification of high and stable proton conductivity and satisfactory thermal/chemical stability and mechanical properties. The fine appearance of membranes revealed uniform dispersion of components. Measurements of properties showed that the SPEEK(74%)/PU/CdTe-mpa(20/60/20)/100%PA membrane as a candidate anhydrous PEM is promising for use in high-temperature proton exchange membrane fuel cells. Specifically, the recommended membrane showed a proton conductivity of 1.18 × 10-1 S cm-1 at 160 °C and 3.96 × 10-2 S cm-1 at 100 °C, lasting for 600 h, and a tensile stress of 14.6 MPa at room temperature. Mixing inorganic CdTe nanocrystals with polymers to form inorganic/organic composite membranes is effective for producing anhydrous PEMs with cheaper polymers without functional groups to conduct protons.
Collapse
Affiliation(s)
- Jin Jin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|