1
|
Wang F, Sun Z, Zhang H, Zhu H. Study on AEMs with Excellent Comprehensive Performance Prepared by Covalently Cross-Linked p-Triphenyl with SEBS Remotely Grafted Piperidine Cations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7894-7903. [PMID: 38300277 DOI: 10.1021/acsami.3c18256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
A series of SEBS-C6-PIP-yPTP (y = 0-15%) AEMs with good mechanical and chemical stability were prepared by combining the strong rigidity of p-triphenyl, good toughness of SEBS, and excellent stability of PIP cations. After the introduction of a p-triphenyl polymer into the main chain, a clear hydrophilic-hydrophobic phase separation structure was constructed within the membrane, forming a continuous and interconnected ion transport channel to improve ion transport efficiency. Moreover, the molecular chains of the cross-linked AEMs change from chain-like to network-like, and the tighter binding between each molecule increases the tensile strength. The special structure of the six-membered ring makes PIP have a significant constraint effect; when nucleophilic substitution and Hoffman elimination occur at the α and β positions, the required transition state potential energy increases, making the reaction difficult to occur and improving the alkaline stability of the polymer membrane. The SEBS-C6-PIP-15%PTP membrane has the best mechanical properties (Ts = 38.79 MPa, Eb = 183.09% at 80 °C, 100% RH), the highest ion conductivity (102.02 mS. cm-1 at 80 °C), and the best alkaline stability (6.23% degradation at 80 °C in a 2 M NaOH solution for 1400 h). It can be seen that organic-organic covalent cross-linking is an effective means to improve the comprehensive performance of AEMs.
Collapse
Affiliation(s)
- Fanghui Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhaonan Sun
- China Fire and Rescue Institute, Beijing 102201, China
| | - Hanfei Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hong Zhu
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
2
|
|
3
|
Balzade Z, Sharif F, Ghaffarian Anbaran SR. Tailor-Made Functional Polyolefins of Complex Architectures: Recent Advances, Applications, and Prospects. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zahra Balzade
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | - Farhad Sharif
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | | |
Collapse
|
4
|
Design, synthesis and characterization of SEBS anion exchange membranes with ultrahigh dimensional stability. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Wang F, Cui Y, Sang J, Zhang H, Zhu H. Cross‐linked of poly(biphenyl pyridine) and poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) grafted with double cations for anion exchange membrane. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Yuan Y, Du X, Zhang H, Wang H, Wang Z. Poly (isatin biphenylene) polymer containing ferrocenium derivatives for anion exchange membrane fuel cell. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Sang J, Yang L, Li Z, Wang F, Wang Z, Zhu H. Comb-shaped SEBS-based anion exchange membranes with obvious microphase separation morphology. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Ma L, Hussain M, Li L, Qaisrani NA, Bai L, Jia Y, Yan X, Zhang F, He G. Octopus-like side chain grafted poly(arylene piperidinium) membranes for fuel cell application. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Exploring the acid enrichment application of piperidinium-functionalized cross-linked poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes in electrodialysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118999] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Wang L, You R, Ling Y, Xie Y, Mei C, Li Z, Wang F. Covalent cross-linked anion exchange membrane based on poly(biphenyl piperidine) and poly(styrene-b-(ethylene-co-butylene)-b-styrene): preparation and properties. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1888987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Liujiao Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Rixin You
- College of Chemistry, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Yuxuan Ling
- College of Chemistry, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Yu Xie
- College of Chemistry, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Cenyu Mei
- College of Chemistry, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Ziming Li
- College of Chemistry, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Fanghui Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing, P.R. China
| |
Collapse
|
11
|
Shi Y, Meng F, Zhao Z, Liu W, Zhang C. Hybrid anion exchange membranes with adjustable ion transport channels designed by compounding
SEBS
and homo‐polystyrene. J Appl Polym Sci 2021. [DOI: 10.1002/app.50540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yue Shi
- State Key Laboratory of Fine Chemicals School of Chemical Engineering, Dalian University of Technology Dalian China
| | - Fanzhi Meng
- State Key Laboratory of Fine Chemicals School of Chemical Engineering, Dalian University of Technology Dalian China
| | - Zhongfu Zhao
- State Key Laboratory of Fine Chemicals School of Chemical Engineering, Dalian University of Technology Dalian China
| | - Wei Liu
- State Key Laboratory of Fine Chemicals School of Chemical Engineering, Dalian University of Technology Dalian China
| | - Chunqing Zhang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering, Dalian University of Technology Dalian China
| |
Collapse
|
12
|
Son TY, Kim DJ, Vijayakumar V, Kim K, Kim DS, Nam SY. Anion exchange membrane using poly(ether ether ketone) containing imidazolium for anion exchange membrane fuel cell (AEMFC). J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Li Z, Li C, Long C, Sang J, Tian L, Wang F, Wang Z, Zhu H. Elastic and durable multi‐cation‐crosslinked anion exchange membrane based on poly(styrene‐
b
‐(ethylene‐
co
‐butylene)‐
b
‐styrene). JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200290] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ziming Li
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Conghui Li
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Chuan Long
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Jing Sang
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Lin Tian
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Fanghui Wang
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Zhihua Wang
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Hong Zhu
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| |
Collapse
|
14
|
Müller J, Zhegur A, Krewer U, Varcoe JR, Dekel DR. Practical ex-Situ Technique To Measure the Chemical Stability of Anion-Exchange Membranes under Conditions Simulating the Fuel Cell Environment. ACS MATERIALS LETTERS 2020; 2:168-173. [PMID: 32905244 PMCID: PMC7469134 DOI: 10.1021/acsmaterialslett.9b00418] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/07/2020] [Indexed: 05/22/2023]
Abstract
Anion-exchange membrane (AEM) degradation during fuel cell operation represents the main challenge that hampers the implementation of AEM fuel cells (AEMFCs). Reported degradation values of AEMs are difficult to reproduce as no standard methods are used. The present use of different techniques based on exposure of membranes to aqueous KOH solutions under different conditions and measuring different outputs during time does not allow for a reliable and meaningful comparison of reported degradation data of different AEMs. In this study, we present a practical and reproducible ex-situ technique to measure AEM degradation in conditions that mimic an operando fuel cell environment. In this novel technique, we measure the change of the true hydroxide conductivity of the AEM over time, while exposing it to different relative humidity conditions. The technique does not make use of liquid alkaline solution, thus simulating real fuel cell conditions and providing a good baseline for comparative degradation studies.
Collapse
Affiliation(s)
- Jasmin Müller
- The
Wolfson Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel
- Institute
of Energy and Process Systems Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Avital Zhegur
- The
Wolfson Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Ulrike Krewer
- Institute
of Energy and Process Systems Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - John R. Varcoe
- Department
of Chemistry, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Dario R. Dekel
- The
Wolfson Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel
- The
Nancy & Stephan Grand Technion Energy Program (GTEP), Technion, Israel Institute of Technology, Haifa 3200003, Israel
- E-mail:
| |
Collapse
|
15
|
Preparation and properties of amorphous TiO2 modified anion exchange membrane by impregnation-hydrolysis method. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.104348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|