1
|
Vieira EG, de Paiva REF, Miguel RB, de Oliveira APA, Franco de Melo Bagatelli F, Oliveira CC, Tuna F, da Costa Ferreira AM. An engineered POSS drug delivery system for copper(II) anticancer metallodrugs in a selective application toward melanoma cells. Dalton Trans 2024; 53:12567-12581. [PMID: 39005067 DOI: 10.1039/d4dt00535j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In this work, a polyhedral silsesquioxane (POSS) was used as an engineered drug delivery system for two oxindolimine-copper(II) anticancer complexes, [Cu(isaepy)]+ and [Cu(isapn)]+. The interest in hybrid POSS comes from the necessity of developing materials that can act as adjuvants to improve the cytotoxicity of non-soluble metallodrugs. Functionalization of POSS with a triazole ligand (POSS-atzac) permitted the anchorage of such copper complexes, producing hybrid materials with efficient cytotoxic effects. Structural and morphological characterizations of these copper-POSS systems were performed by using different techniques (IR, NMR, thermogravimetric analysis). A combination of continuous-wave (CW) and pulsed EPR (HYSCORE) spectroscopies conducted at the X-band have enabled the complete characterization of the coordination environment of the copper ion in the POSS-atzac matrix. Additionally, the cytotoxic effects of the loaded materials, [Cu(isapn)]@POSS-atzac and [Cu(isaepy)]@POSS-atzac, were assessed toward melanomas (SK-MEL), in comparison to non-tumorigenic cells (fibroblast P4). Evaluation of their nuclease activity or ability to facilitate cleavage of DNA indicated concentrations as low as 0.6 μg mL-1, while complete DNA fragmentation was observed at 25 μg mL-1. By using adequate scavengers, investigations on active intermediates responsible for their cytotoxicity were performed, both in the absence and in the presence of ascorbate as a reducing agent. Based on the observed selective cytotoxicity of these materials toward melanomas, investigations on the reactivity of these complexes and corresponding POSS-materials with melanin, a molecule that contributes to melanoma resistance to chemotherapy, were carried out. Results indicated the main role of the binuclear copper species, formed at the surface of the silica matrix, in the observed reactivity and selectivity of these copper-POSS systems.
Collapse
Affiliation(s)
- Eduardo Guimarães Vieira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
- EPSRC National EPR Facility, Department of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, M13 9PL, Manchester, UK
| | - Raphael Enoque Ferraz de Paiva
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| | - Rodrigo Bernardi Miguel
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| | - Ana Paula Araujo de Oliveira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| | - Felipe Franco de Melo Bagatelli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
| | - Carla Columbano Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
| | - Floriana Tuna
- EPSRC National EPR Facility, Department of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, M13 9PL, Manchester, UK
| | - Ana Maria da Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Karasiewicz J, Dutkiewicz M, Olejnik A, Leśniewska J, Janicka Z, Maciejewski H. POSS derivatives containing extremely different surface properties as emulsifiers in colloidal systems. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
3
|
Wang X, Wang YQ, Wu DC. Facile Fabrication of Hyperbranched Polyacetal Quaternary Ammonium with pH-Responsive curcumin Release for Synergistic Antibacterial Activity. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Ding S, Zhao S, Gan X, Sun A, Xia Y, Liu Y. Design of Fluorescent Hybrid Materials Based on POSS for Sensing Applications. Molecules 2022; 27:3137. [PMID: 35630610 PMCID: PMC9146672 DOI: 10.3390/molecules27103137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 02/05/2023] Open
Abstract
Polyhedral oligomeric silsesquioxane (POSS) has a nanoscale silicon core and eight organic functional groups on the surface, with sizes from 0.7 to 1.5 nm. The three-dimensional nanostructures of POSS can be used to build all types of hybrid materials with specific performance and controllable nanostructures. The applications of POSS-based fluorescent materials have spread across various fields. In particular, the employment of POSS-based fluorescent materials in sensing application can achieve high sensitivity, selectivity, and stability. As a result, POSS-based fluorescent materials are attracting increasing attention due to their fascinating vistas, including unique structural features, easy fabrication, and tunable optical properties by molecular design. Here, we summarize the current available POSS-based fluorescent materials from design to sensing applications. In the design section, we introduce synthetic strategies and structures of the functionalized POSS-based fluorescent materials, as well as photophysical properties. In the application section, the typical POSS-based fluorescent materials used for the detection of various target objects are summarized with selected examples to elaborate on their wide applications.
Collapse
Affiliation(s)
- Sha Ding
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (S.Z.); (X.G.); (A.S.)
| | - Shuai Zhao
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (S.Z.); (X.G.); (A.S.)
| | - Xingyue Gan
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (S.Z.); (X.G.); (A.S.)
| | - Aokui Sun
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (S.Z.); (X.G.); (A.S.)
| | - Yong Xia
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (S.Z.); (X.G.); (A.S.)
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (S.Z.); (X.G.); (A.S.)
| |
Collapse
|
5
|
Li D, Tang G, Yao H, Zhu Y, Shi C, Fu Q, Yang F, Wang X. Formulation of pH-responsive PEGylated nanoparticles with high drug loading capacity and programmable drug release for enhanced antibacterial activity. Bioact Mater 2022; 16:47-56. [PMID: 35386319 PMCID: PMC8958631 DOI: 10.1016/j.bioactmat.2022.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Dawei Li
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100091, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guoke Tang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Hui Yao
- Department of Orthopedics, Eye Hospital China Academy of Chinese Medical Sciences, Beijing, 100040, China
| | - Yuqi Zhu
- Department of Orthopedics, Eye Hospital China Academy of Chinese Medical Sciences, Beijing, 100040, China
| | - Changgui Shi
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, 20003, China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
- Corresponding author.
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Corresponding author. Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Corresponding author. Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
6
|
Ataee B, Khorasani MT, Karimi M, Daliri-Joupari M. Surface modification of polyurethane/HCNT nanocomposite with octavinyl polyhedral oligomeric silsesquioxane as a heart valve material. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1937160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Boshra Ataee
- Department of Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Majid Karimi
- Polymerization Engineering Department, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Morteza Daliri-Joupari
- Department of Animal, Avian and Marine Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
7
|
Positive Luminescent Sensor for Aerobic Conditions Based on Polyhedral Oligomeric Silsesquioxane Networks. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0398-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
A polyhedral oligomeric silsesquioxanes/dual ligands-based magnetic adsorbent for effective extraction of aflatoxins in cereals via multiple interactions. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Mituła K, Duszczak J, Rzonsowska M, Żak P, Dudziec B. Polysiloxanes Grafted with Mono(alkenyl)Silsesquioxanes-Particular Concept for Their Connection. MATERIALS 2020; 13:ma13214784. [PMID: 33114766 PMCID: PMC7662624 DOI: 10.3390/ma13214784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/20/2022]
Abstract
Herein, a facile and efficient synthetic route to unique hybrid materials containing polysiloxanes and mono(alkyl)silsesquioxanes as their pendant modifiers (T8@PS) was demonstrated. The idea of this work was to apply the hydrosilylation reaction as a tool for the efficient and selective attachment of mono(alkenyl)substituted silsesquioxanes (differing in the alkenyl chain length, from -vinyl to -dec-9-enyl and types of inert groups iBu, Ph at the inorganic core) onto two polysiloxanes containing various amount of Si-H units. The synthetic protocol, determined and confirmed by FT-IR in situ and NMR analyses, was optimized to ensure complete Si-H consumption along with the avoidance of side-products. A series of 20 new compounds with high yields and complete β-addition selectivity was obtained and characterized by spectroscopic methods.
Collapse
Affiliation(s)
- Katarzyna Mituła
- Faculty of Chemistry, Department of Organometallic Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (J.D.); (M.R.); (P.Ż.)
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Correspondence: (K.M.); (B.D.); Tel.: +48-61-829-1878 (B.D.)
| | - Julia Duszczak
- Faculty of Chemistry, Department of Organometallic Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (J.D.); (M.R.); (P.Ż.)
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Monika Rzonsowska
- Faculty of Chemistry, Department of Organometallic Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (J.D.); (M.R.); (P.Ż.)
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Patrycja Żak
- Faculty of Chemistry, Department of Organometallic Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (J.D.); (M.R.); (P.Ż.)
| | - Beata Dudziec
- Faculty of Chemistry, Department of Organometallic Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (J.D.); (M.R.); (P.Ż.)
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Correspondence: (K.M.); (B.D.); Tel.: +48-61-829-1878 (B.D.)
| |
Collapse
|
10
|
Tang G, Tan Z, Zeng W, Wang X, Shi C, Liu Y, He H, Chen R, Ye X. Recent Advances of Chitosan-Based Injectable Hydrogels for Bone and Dental Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:587658. [PMID: 33042982 PMCID: PMC7527831 DOI: 10.3389/fbioe.2020.587658] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 01/05/2023] Open
Abstract
Traditional strategies of bone repair include autografts, allografts and surgical reconstructions, but they may bring about potential hazard of donor site morbidity, rejection, risk of disease transmission and repetitive surgery. Bone tissue engineering (BTE) is a multidisciplinary field that offers promising substitutes in biopharmaceutical applications, and chitosan (CS)-based bone reconstructions can be a potential candidate in regenerative tissue fields owing to its low immunogenicity, biodegradability, bioresorbable features, low-cost and economic nature. Formulations of CS-based injectable hydrogels with thermo/pH-response are advantageous in terms of their high-water imbibing capability, minimal invasiveness, porous networks, and ability to mold perfectly into an irregular defect. Additionally, CS combined with other naturally-derived or synthetic polymers and bioactive agents has proven to be an effective alternative to autologous bone and dental grafts. In this review, we will highlight the current progress in the development of preparation methods, physicochemical properties and applications of CS-based injectable hydrogels and their perspectives in bone and dental regeneration. We believe this review is intended as starting point and inspiration for future research effort to develop the next generation of tissue-engineering scaffold materials.
Collapse
Affiliation(s)
- Guoke Tang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine, Central South University (CSU), Hunan, China
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Tan
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine, Central South University (CSU), Hunan, China
| | - Wusi Zeng
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine, Central South University (CSU), Hunan, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changgui Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yi Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailong He
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Rui Chen
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiaojian Ye
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Bao W, Li M, Yang Y, Wan Y, Wang X, Bi N, Li C. Advancements and Frontiers in the High Performance of Natural Hydrogels for Cartilage Tissue Engineering. Front Chem 2020; 8:53. [PMID: 32117879 PMCID: PMC7028759 DOI: 10.3389/fchem.2020.00053] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Cartilage injury originating from trauma or osteoarthritis is a common joint disease that can bring about an increasing social and economic burden in modern society. On account of its avascular, neural, and lymphatic characteristics, the poor migration ability of chondrocytes, and a low number of progenitor cells, the self-healing ability of cartilage defects has been significantly limited. Natural hydrogels, occurring abundantly with characteristics such as high water absorption, biodegradation, adjustable porosity, and biocompatibility like that of the natural extracellular matrix (ECM), have been developed into one of the most suitable scaffold biomaterials for the regeneration of cartilage in material science and tissue engineering. Notably, natural hydrogels derived from sources such as animal or human cadaver tissues possess the bionic mechanical behaviors of physiological cartilage that are required for usage as articular cartilage substitutes, by which the enhanced chondrogenic phenotype ability may be achieved by facilely embedding living cells, controlling degradation profiles, and releasing stimulatory growth factors. Hence, we summarize an overview of strategies and developments of the various kinds and functions of natural hydrogels for cartilage tissue engineering in this review. The main concepts and recent essential research found that great challenges like vascularity, clinically relevant size, and mechanical performances were still difficult to overcome because the current limitations of technologies need to be severely addressed in practical settings, particularly in unpredictable preclinical trials and during future forays into cartilage regeneration using natural hydrogel scaffolds with high mechanical properties. Therefore, the grand aim of this current review is to underpin the importance of preparation, modification, and application for the high performance of natural hydrogels for cartilage tissue engineering, which has been achieved by presenting a promising avenue in various fields and postulating real-world respective potentials.
Collapse
Affiliation(s)
- Wuren Bao
- School of Nursing, Inner Mongolia University for Nationalities, Tongliao, China
| | - Menglu Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yanyu Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- College of Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Yi Wan
- Orthopaedic Department, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Na Bi
- Orthopaedic Department, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunlin Li
- Orthopaedic Department, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Usui K, Miyashita K, Maeda K, Manaka Y, Chun WJ, Inazu K, Motokura K. Multifunctional Catalytic Surface Design for Concerted Acceleration of One-Pot Hydrosilylation-CO 2 Cycloaddition. Org Lett 2019; 21:9372-9376. [PMID: 31741391 DOI: 10.1021/acs.orglett.9b03602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Silica-supported Rh-ammonium iodide catalyst showed high performance for hydrosilylation-CO2 cycloaddition reaction sequences. The catalyst was prepared by surface grafting of Rh and the silane-coupling reaction of the ammonium iodide moiety. The acceleration of each catalytic reaction was realized due to the concerted catalysis between Rh species, immobilized organic functions, and surface Si-OH groups. As a result, good to excellent yields of silyl carbonates were obtained from epoxyolefins, hydrosilanes, and CO2 under mild reaction conditions.
Collapse
Affiliation(s)
- Kei Usui
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , Yokohama 226-8502 , Japan
| | - Kodai Miyashita
- Department of Chemistry and Biochemistry , National Institute of Technology, Numazu College , Numazu 410-8501 , Japan
| | - Kyogo Maeda
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , Yokohama 226-8502 , Japan
| | - Yuichi Manaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , Yokohama 226-8502 , Japan.,Renewable Energy Research Center , National Institute of Advanced Industrial Science and Technology , Fukushima 963-0298 , Japan
| | - Wang-Jae Chun
- Graduate School of Arts and Sciences , International Christian University , Mitaka , Tokyo 181-8585 , Japan
| | - Koji Inazu
- Department of Chemistry and Biochemistry , National Institute of Technology, Numazu College , Numazu 410-8501 , Japan
| | - Ken Motokura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , Yokohama 226-8502 , Japan.,PRESTO , Japan Science and Technology Agency (JST) , Saitama 332-0012 , Japan
| |
Collapse
|