Yang J, Feng J, He K, Chen Z, Chen W, Cao H, Yuan S. Preparation of thermosensitive buprofezin-loaded mesoporous silica nanoparticles by the sol-gel method and their application in pest control.
PEST MANAGEMENT SCIENCE 2021;
77:4627-4637. [PMID:
34087044 DOI:
10.1002/ps.6502]
[Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 06/04/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND
Environmental stimuli-responsive release is one important way to reduce the dosage of pesticide, increase the usage efficiency and improve environmental compatibility.
RESULTS
On this basis, we synthesized mesoporous silica nanoparticles (MSNs) and modified them to develop a thermosensitive pesticide controlled release formulation (CRF). In this study, MSNs prepared by the sol-gel method were used as the core, poly (N-IsoPropylAcrylaMide) [P (NIPAM-MAA)] was used as the shell, and buprofezin (Bup) was loaded by adsorption. The prepared Bup@MSNs@P(NIPAM-MAA) could effectively prevent the degradation of buprofezin under UV light and exhibited excellent adhesion to rice leaves. The bioassay results showed that the mortality of Nilaparvata lugens (Stål) treated by Bup@MSNs@P(NIPAM-MAA) was positively correlated with temperature, resulting mainly from the change of release amount of buprofezin caused by temperature variation. Bup@MSNs@P(NIPAM-MAA) had long duration (20 days) for controlling N. lugens, and did not hinder the growth of rice. Meanwhile, Bup@MSNs@P(NIPAM-MAA) had low toxicity to zebrafish and human pneumonocyte BEAS-2B cells.
CONCLUSION
This novel thermosensitive pesticide CRF can be applied widely to other insecticides, thus greatly promoting the development of intelligent pesticide formulations. © 2021 Society of Chemical Industry.
Collapse