1
|
Babu M K S, Manickasundaram M, Kancharla S. A Dual-Function Insoluble Ionic Liquid for the Selective Recovery of Gold and Copper from E-Waste. CHEMSUSCHEM 2025; 18:e202402419. [PMID: 40041933 DOI: 10.1002/cssc.202402419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/03/2025] [Indexed: 03/20/2025]
Abstract
As natural resources for valuable metals diminish, the recovery of these metals from alternative sources is increasingly important. E-waste, containing higher concentrations of valuable metals compared to natural deposits, presents a promising solution. In this study, a carboxyl-functionalized imidazolium-based ionic liquid 1-carboxymethyl-3-dodecyl imidazolium bromide [C12C1COOHim]Br was employed for the selective recovery of gold (Au) and copper (Cu) from discarded CPU pins. Gold was efficiently adsorbed from aqua regia-leached solutions at room temperature, achieving a recovery rate of 96.7 % and a purity exceeding 97 %. Copper was selectively leached in an aqueous medium at 65 °C, with a recovery rate of 99.1 %. The maximum uptake capacity for gold and copper was obtained as 447 mg/g and 286 mg/g respectively. The dual-function ionic liquid acted as a sorbent for gold through anion exchange and as a leaching agent for copper via coordination with carboxylic acid groups. XPS analysis confirmed the binding interactions involved in both recovery processes. This work demonstrates an effective and sustainable methodology for recovering critical metals from e-waste, highlighting its potential for industrial applications in metal recycling.
Collapse
Affiliation(s)
- Sajith Babu M K
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Madhumitha Manickasundaram
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Srinivasarao Kancharla
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| |
Collapse
|
2
|
Jiang X, Yan S, Sun H, Kong XZ, Li S, Shi H, Zhu X, Gu X. Preparation of fluorescent polyurethane microspheres and their applications as reusable sensor for 4-nitrophenol detection and as microplastics model for visualizing polyurethane in cells and zebrafish. J Colloid Interface Sci 2024; 673:550-563. [PMID: 38889546 DOI: 10.1016/j.jcis.2024.06.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Fluorescent microspheres are of significant interests due to their wide applications in biotechnology fields. However, their preparation presents several challenges, such as the need for dye labeling, the complexity of materials and often sophisticated preparation conditions. Here a simple process for hydrophilic and crosslinked polyurethane (CPU) microspheres, with carboxyl groups on the surface via one-step precipitation polymerization in 40 min, is presented. The microsphere size is easily adjusted by varying experimental conditions. CPU microspheres exhibit high thermal and pH stability with good redispersibility in water, and emit fluorescence without any modification or dye labeling. The emission mechanism is discussed. CPU microspheres are used as fluorescent probe to detect 4-nitrophenol (4-NP) based on their emission in UV light region, with excellent selectivity and sensitivity. In addition, they are reusable with detection limit unchanged after 7 cycles of reuses, a significant feature of this work. The mechanism of fluorescence detection is thoroughly explored and ascribed to the internal filtration effect. Based on the emission in visible light region, CPU microspheres are used as a model of PU microplastics (MPs) to visualize their biodistribution in HeLa and macrophage cells, as well as in zebrafish larvae, providing a reliable tracer for the visualization and tracking of PU MPs in organisms.
Collapse
Affiliation(s)
- Xubao Jiang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Siqiang Yan
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hao Sun
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shusheng Li
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Haoran Shi
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaoli Zhu
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Xiangling Gu
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China.
| |
Collapse
|
3
|
Cegłowski M, Otłowski T, Gierczyk B, Smeets S, Lusina A, Hoogenboom R. Explosives removal and quantification using porous adsorbents based on poly(2-oxazoline)s with various degree of functionalization. CHEMOSPHERE 2023; 340:139807. [PMID: 37574087 DOI: 10.1016/j.chemosphere.2023.139807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Polymeric porous adsorbents are reported for removal of explosives, namely picric acid, 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN) and their subsequent quantification using direct analysis with ambient plasma mass spectrometry. The adsorbents are obtained by functionalization of short-chain poly(2-oxazoline)s with methyl ester side chains using 4-(aminomethyl)pyridine with a degree of functionalization equal to 0, 5, 10, and 20%. The subsequent step consist of cross-linking using a high internal phase emulsion procedure by further side-chain amidation with diethylenetriamine as crosslinker. Picric acid, RDX, and PETN were chosen as the model compounds as they belong to three different groups of explosives, in particular nitroaromatics, nitroamines, and nitrate esters, respectively. The adsorption isotherms, kinetics, as well as the influence of pH and temperature on the adsorption process was investigated. The porous adsorbents showed the highest maximum adsorption capacity towards picric acid, reaching 334 mg g-1, while PETN (80 mg g-1) and RDX (17.4 mg g-1) were less efficiently adsorbed. Subsequent quantification of the adsorbed explosives is performed by a specially designed ambient mass spectrometry setup equipped with a thermal heater. The obtained limits of detection were found to be 20-times improved compared to direct analysis of analyte solutions. The effectiveness of the proposed analytical setup is confirmed by successful quantification of the explosives in river water samples. The research clearly shows that functional porous adsorbents coupled directly with ambient mass spectrometry can be used for rapid quantification of explosives, which can be, e.g., used for tracking illegal manufacturing sites of these compounds.
Collapse
Affiliation(s)
- Michał Cegłowski
- Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| | - Tomasz Otłowski
- Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Błażej Gierczyk
- Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Sander Smeets
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000, Ghent, Belgium
| | - Aleksandra Lusina
- Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000, Ghent, Belgium.
| |
Collapse
|
4
|
Bogdanowicz N, Lusina A, Nazim T, Cegłowski M. Rapid quantification of 2,4-dichlorophenol in river water samples using molecularly imprinted polymers coupled to ambient plasma mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131068. [PMID: 36857825 DOI: 10.1016/j.jhazmat.2023.131068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Rapid quantification of environmental pollutants is important for water quality control and environmental monitoring. In this work, we report the development of molecularly imprinted polymers (MIPs) obtained from poly(methyl vinyl ether-alt-maleic acid) polymer. The synthesized materials were used for selective preconcentration of 2,4-dichlorophenol, a priority pollutant which creates a threat to public health. The structure of poly(methyl vinyl ether-alt-maleic acid) was functionalized with 4-aminomethylpyridine (4-AMP) to incorporate pyridine groups presumably responsible for increased affinity towards 2,4-dichlorophenol. The synthesis was performed with different degree (10%, 20% and 30%) of 4-AMP functionalization to investigate the influence of pyridine group content on the final MIPs properties. The molecular imprinting process was conducted by amidation of polymers' anhydride groups with diethylenetriamine. Moreover, the experimental data indicated that maximum adsorption capacity was observed for the highest 4-AMP functionalization degree. Similarly, MIPs with the highest 4-AMP content proved to possess the highest selectivity towards the analyte. Finally, the functionalized MIPs were used to quantify 2,4-dichlorophenol by their direct introduction into a specially designed ambient mass spectrometry setup. The detection limits were improved significantly over the ones measured for pure analyte solution. The proposed analytical technique was used to quantify 2,4-dichlorophenol in river water and wastewater samples. Good recovery results were obtained, which proves that the method can be used for analysis of complex real-life samples.
Collapse
Affiliation(s)
- Natalia Bogdanowicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Aleksandra Lusina
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Tomasz Nazim
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland.
| |
Collapse
|
5
|
Fluorescence Behavior and Emission Mechanisms of Poly(ethylene succinamide) and Its Applications in Fe3+ Detection and Data Encryption. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Laxmi, Shahzaib A, Alam M, Ghosal A, Zafar F, Nishat N. Development of nanostructured green divalent manganese‐coordinated polyurea. J Appl Polym Sci 2022. [DOI: 10.1002/app.52993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Laxmi
- Inorganic Materials Research Lab, Department of Chemistry Jamia Millia Islamia New Delhi India
- Government College Faridabad India
| | - Adnan Shahzaib
- Inorganic Materials Research Lab, Department of Chemistry Jamia Millia Islamia New Delhi India
| | - Manawwer Alam
- Department of Chemistry College of Science, King Saud University Riyadh Saudi Arabia
| | - Anujit Ghosal
- Richardson Centre for Food Technology and Research, Department of Food & Human Nutritional Sciences The University of Manitoba Winnipeg Canada
| | - Fahmina Zafar
- Inorganic Materials Research Lab, Department of Chemistry Jamia Millia Islamia New Delhi India
| | - Nahid Nishat
- Inorganic Materials Research Lab, Department of Chemistry Jamia Millia Islamia New Delhi India
| |
Collapse
|
7
|
Sohail Bashir M, Zheng Kong X, Ramzan N, Arif M, Bashir H, Azhar U, Zaib Arshad J, Shoaib Ahmad Shah S, Wang F. Systemic Study on Interfacial Polymerization Mechanism of Toluene Diisocyanate and Water for the Preparation of Polyurea Microspheres. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Kumar M, Pakshirajan K. Immobilized biogenic copper nanoparticles from metallic wastewater as catalyst for triazole synthesis by click reaction using water as solvent. NEW J CHEM 2022. [DOI: 10.1039/d2nj02882d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, biogenic copper nanoparticles from metallic wastewater were examined for triazoles synthesis by click reaction. The size of the copper nanoparticles obtained by biogenic sulfate reduction of synthetic...
Collapse
|
9
|
Li S, Kuang R, Zheng Kong X, Zhu X, Jiang X. Immobilization of cobalt oxide nanoparticles on porous nitrogen-doped carbon as electrocatalyst for oxygen evolution. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Bashir MS, Jiang X, Yang X, Kong XZ. Porous Polyurea Supported Pd Catalyst: Easy Preparation, Full Characterization, and High Activity and Reusability in Reduction of Hexavalent Chromium in Aqueous System. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Xubao Jiang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xingjie Yang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
11
|
Stoichiometric modulation of triazine based polyurea frameworks for carbon dioxide capture. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Sun B, Li S, Jiang X, Zhu X, Kong XZ. Synthesis of post‐modified poly(ester‐amino) microspheres via
aza‐Michael
precipitation polymerization and its use for enzyme immobilization. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bo Sun
- College of Chemistry and Chemical Engineering University of Jinan Jinan China
| | - Shusheng Li
- College of Chemistry and Chemical Engineering University of Jinan Jinan China
| | - Xubao Jiang
- College of Chemistry and Chemical Engineering University of Jinan Jinan China
| | - Xiaoli Zhu
- College of Chemistry and Chemical Engineering University of Jinan Jinan China
| | - Xiang Z. Kong
- College of Chemistry and Chemical Engineering University of Jinan Jinan China
| |
Collapse
|
13
|
Nian Y, Luo L, Zhu W, Yang C, Zhang L, Li M, Zhang W, Wang J. Does the intrinsic photocontrollable oxidase-mimicking activity of 2-aminoterephthalic acid dominate the activity of metal–organic frameworks? Inorg Chem Front 2021. [DOI: 10.1039/d1qi00319d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ligand ATA possesses intrinsic photocontrolled oxidase-like activity, showing promise in designing ATA-MOF with photoresponsive enzyme-like activity like Al-ATA and establishing the colorimetric strategy for Cu2+ detection.
Collapse
Affiliation(s)
- Ying Nian
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Linpin Luo
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Wenxin Zhu
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Chengyuan Yang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Liang Zhang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Min Li
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Wentao Zhang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Jianlong Wang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| |
Collapse
|
14
|
Cao H, Li B, Jiang X, Zhu X, Kong XZ. Fluorescent linear polyurea based on toluene diisocyanate: Easy preparation, broad emission and potential applications. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2020; 399:125867. [PMID: 32572332 PMCID: PMC7292956 DOI: 10.1016/j.cej.2020.125867] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 06/04/2023]
Abstract
In contrast to conventional fluorescent polymers featured by large conjugation structures, a new class of fluorescent polymers without above conjugations are gaining constant interest owing to their significant academic importance and promising applications in diverse fields. These unconventional fluorescent polymers are in general composed of heteroatoms (e.g. N, O, P, and S) under different forms. Here we report our recent study on polyurea, prepared by a very simple one step precipitation polymerization of toluene diisocyanate in a binary solvent of water-acetone. This polyurea, basically consisting of phenyl ring and urea group, shows fluorescent emission in a broad concentration range, from very low (10-5 mg/mL) to its solubility limit (50 mg/mL), and in a wide range of emission wavelength from UV to visible regions of up to 500 nm under varied excitation wavelength. The emission behaviors were fully studied under different concentrations and excitations. It was concluded that the emission in UV region was intrinsic due to the conjugation between the phenyl and the adjacent urea unit; while the emission in visible region, strongly excitation dependent, was caused by the cluster formation of the molecular chains, in accordance with the cluster-triggered-emission (CTE) mechanism. The formation of the cluster was tested through dynamic light scattering, FTIR and UV absorbance. Tested in presence of different metal ions, Fe3+ demonstrated a quenching effect with high selectivity. Based on this study, different paper-based sensors were designed to detect Fe3+, H2O2 in bioanalysis and for data encryption. This work provides a simple way to prepare a polyurea, a novel type of unconventional fluorescent polymer, with high emission performance distinct from its known analogues.
Collapse
Affiliation(s)
- Hongyan Cao
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Bin Li
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Québec Center for Functional Materials, Department of Chemistry, Université de Sherbrooke, Sherbrooke, QC J1K2R1, Canada
| | - Xubao Jiang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaoli Zhu
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
15
|
Sahebjamee N, Soltanieh M, Mousavi SM, Heydarinasab A. Preparation and characterization of porous chitosan–based membrane with enhanced copper ion adsorption performance. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Porous polyurea microspheres with Pd immobilized on surface and their catalytic activity in 4-nitrophenol reduction and organic dyes degradation. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109652] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|