1
|
Tsolele R, Arotiba OA, Malinga SP. Improving selectivity and antifouling properties of a PES hollow fibre membrane with a photo-enzyme for the removal of ciprofloxacin and sulfamethoxazole. ENVIRONMENTAL TECHNOLOGY 2025; 46:453-476. [PMID: 38830144 DOI: 10.1080/09593330.2024.2360231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
A multifunctional hollow fibre was prepared by the modification of polyethersulfone (PES) with laccase (Lac) and phosphorus-doped graphitic carbon nitride (P-gC3N4) for the removal of ciprofloxacin and sulfamethoxazole. The properties and structure elucidation of the prepared membranes were evaluated using contact angle analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), correlative light electron microscopy (CLEM), atomic force microscopy (AFM), tensile strength, water-intake capacity, and pure water flux. The modified multifunctional hollow fibre membranes showed increased root mean square surface roughness from 50 nm for neat PES to 104 nm, which contributed to the significantly higher water flux of 90 L.m-2h-1 compared to 54 L.m-2h-1 for pristine PES. The hydrophilicity also improved after modification as the contact angle reduced from 72° ± 1.01° to 42° ± 2.26°. The modified hollow fibre membranes showed an enhanced removal of ciprofloxacin (77%) and sulfamethoxazole (80%). Moreover, antifouling properties towards bovine serum albumin were 89% for FRR, 7% for Rr, 9% for Rir and 17% for Rt. Regeneration studies showed that the multifunctional hollow fibre membrane obtained a high removal percentage of 79% towards sulfamethoxazole after five cycles. Hence, this work proposes a new system that can be successfully utilized in the treatment of emerging pharmaceutical pollutants in water.
Collapse
Affiliation(s)
- R Tsolele
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
- Center for Nanomaterial Science Research, University of Johannesburg, Johannesburg, South Africa
| | - O A Arotiba
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
- Center for Nanomaterial Science Research, University of Johannesburg, Johannesburg, South Africa
| | - S P Malinga
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
- Center for Nanomaterial Science Research, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
2
|
Wen J, Liu X, Han Z, Wang Z, Saitoh H, Li H. Guanidine-modified polysaccharide conditioning layer designed for regulating bacterial attachment behaviors. Colloids Surf B Biointerfaces 2024; 245:114215. [PMID: 39243707 DOI: 10.1016/j.colsurfb.2024.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/02/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024]
Abstract
Biofouling has been persisting as a global problem due to the difficulties in finding efficient and environmentally friendly antifouling coatings for long-term applications. Initial attachment of bacteria on material surface and subsequent formation of biofilm are the predominate phenomena accounting for subsequent occurrence of biofouling. Among the various factors influencing the bacterial attachment, conditioning layer formed by organic macromolecules usually plays the key role in mediating bacterial attachment through altering physicochemical properties of substrate surface. In this study, a guanidine-modified polysaccharide conditioning layer with the capability of tuning the bacterial attachment is constructed and characterized. Dextran, a polysaccharide widespread in bacteria extracellular polymeric substances (EPS), is oxidized by sodium periodate, and cationic polymer polyhexamethylene guanidine hydrochloride (PHMG) is anchored to oxidized dextran (ODEX) by Schiff base reaction. AFM characterization reveals morphological changes of the polysaccharide conditioning layer from tangled chain to island conformation after the PHMG modification. The guanidine-based dextran conditioning layer promotes attachment of both P. aeruginosa and S. aureus and disrupted bacterial cytomembranes are seen for the attached bacteria due to electrostatic interaction of the electropositive guanidine group with the electronegative bacteria. The guanidine-based dextran conditioning layer shows a low survival ratio of 22 %-34 % and 1 %-4 % for P. aeruginosa and S. aureus respectively after incubation in the bacterial suspension for 72 hours. The results would give insight into further exploring the potential applications of the newly designed polysaccharides conditioning layer for combating occurrence of biofouling.
Collapse
Affiliation(s)
- Jianxin Wen
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomei Liu
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhuoyue Han
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhijuan Wang
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Hidetoshi Saitoh
- Department of Materials Science and Technology, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka, Niigata 940-2188, Japan
| | - Hua Li
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Slepička P, Slepičková Kasálková N, Fajstavr D, Frýdlová B, Sajdl P, Kolská Z, Švorčík V. Nanostructures on Fluoropolymer Nanotextile Prepared Using a High-Energy Excimer Laser. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4280. [PMID: 37374464 DOI: 10.3390/ma16124280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
This study is focused on polytetrafluoroethylene (PTFE) porous nanotextile and its modification with thin, silver sputtered nanolayers, combined with a subsequent modification with an excimer laser. The KrF excimer laser was set to single-shot pulse mode. Subsequently, the physico chemical properties, morphology, surface chemistry, and wettability were determined. Minor effects of the excimer laser on the pristine PTFE substrate were described, but significant changes were observed after the application of the excimer laser to the polytetrafluoroethylene with sputtered silver, where the formation of a silver nanoparticles/PTFE/Ag composite was described, with a wettability similar to that of a superhydrophobic surface. Both scanning electron microscopy and atomic force microscopy revealed the formation of superposed globular structures on the polytetrafluoroethylene lamellar primary structure, which was also confirmed using energy dispersive spectroscopy. The combined changes in the surface morphology, chemistry, and thus wettability induced a significant change in the PTFE's antibacterial properties. Samples coated with silver and further treated with the excimer laser 150 mJ/cm2 inhibited 100% of the bacterial strain E. coli. The motivation of this study was to find a material with flexible and elastic properties and a hydrophobic character, with antibacterial properties that could be enhanced with silver nanoparticles, but hydrophobic properties that would be maintained. These properties can be used in different types of applications, mainly in tissue engineering and the medicinal industry, where water-repellent materials may play important roles. This synergy was achieved via the technique we proposed, and even when the Ag nanostructures were prepared, the high hydrophobicity of the system Ag-polytetrafluorethylene was maintained.
Collapse
Affiliation(s)
- Petr Slepička
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Nikola Slepičková Kasálková
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Dominik Fajstavr
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Bára Frýdlová
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Petr Sajdl
- Department of Power Engineering, The University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Zdeňka Kolská
- Faculty of Science, J. E. Purkyně University in Ústí nad Labem, 400 96 Ústí nad Labem, Czech Republic
| | - Václav Švorčík
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| |
Collapse
|
4
|
Kertész S, Al-Tayawi AN, Gergely G, Ott B, Gulyás NS, Jákói Z, Beszédes S, Hodúr C, Szabó T, László Z. Investigation of Different Pre-Treatment Techniques and 3D Printed Turbulence Promoter to Mitigate Membrane Fouling in Dairy Wastewater Module. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3117. [PMID: 37109952 PMCID: PMC10146657 DOI: 10.3390/ma16083117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
This study investigates the enhancement of dairy wastewater treatment using chemical and physical pre-treatments coupled with membrane separation techniques to reduce membrane fouling. Two mathematical models, namely the Hermia and resistance-in-series module, were utilized to comprehend the mechanisms of ultrafiltration (UF) membrane fouling. The predominant fouling mechanism was identified by fitting experimental data into four models. The study calculated and compared permeate flux, membrane rejection, and membrane reversible and irreversible resistance values. The gas formation was also evaluated as a post-treatment. The results showed that the pre-treatments improved UF efficiency for flux, retention, and resistance values compared to the control. Chemical pre-treatment was identified as the most effective approach to improve filtration efficiency. Physical treatments after microfiltration (MF) and UF showed better fluxes, retention, and resistance results than ultrasonic pre-treatment followed by UF. The efficacy of a three-dimensionally printed (3DP) turbulence promoter was also examined to mitigate membrane fouling. The integration of the 3DP turbulence promoter enhanced hydrodynamic conditions and increased the shear rate on the membrane surface, shortening filtration time and increasing permeate flux values. This study provides valuable insights into optimizing dairy wastewater treatment and membrane separation techniques, which can have significant implications for sustainable water resource management. The present outcomes clearly recommend the application of hybrid pre-, main- and post-treatments coupled with module-integrated turbulence promoters in dairy wastewater ultrafiltration membrane modules to increase membrane separation efficiencies.
Collapse
Affiliation(s)
- Szabolcs Kertész
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Krt. 9, H-6725 Szeged, Hungary
| | - Aws N. Al-Tayawi
- Doctoral School of Environmental Sciences, University of Szeged, Tisza Lajos Krt. 103, H-6725 Szeged, Hungary
- Faculty of Environmental Science and Technology, University of Mosul, Al-Majmoa’a Street, Mosul 41002, Iraq
| | - Gréta Gergely
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Krt. 9, H-6725 Szeged, Hungary
| | - Bence Ott
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Krt. 9, H-6725 Szeged, Hungary
| | - Nikolett Sz. Gulyás
- Doctoral School of Environmental Sciences, University of Szeged, Tisza Lajos Krt. 103, H-6725 Szeged, Hungary
| | - Zoltán Jákói
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Krt. 9, H-6725 Szeged, Hungary
- Doctoral School of Environmental Sciences, University of Szeged, Tisza Lajos Krt. 103, H-6725 Szeged, Hungary
| | - Sándor Beszédes
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Krt. 9, H-6725 Szeged, Hungary
| | - Cecilia Hodúr
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Krt. 9, H-6725 Szeged, Hungary
| | - Tamás Szabó
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla Tér. 1, H-6720 Szeged, Hungary
| | - Zsuzsanna László
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Krt. 9, H-6725 Szeged, Hungary
| |
Collapse
|
5
|
Abd‐Elhamid AI, Nayl AA. Nanomaterials in Filtration. NANOTECHNOLOGY FOR ENVIRONMENTAL REMEDIATION 2022:77-101. [DOI: 10.1002/9783527834143.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
6
|
Yu Y, Zhou Z, Huang G, Cheng H, Han L, Zhao S, Chen Y, Meng F. Purifying water with silver nanoparticles (AgNPs)-incorporated membranes: Recent advancements and critical challenges. WATER RESEARCH 2022; 222:118901. [PMID: 35933814 DOI: 10.1016/j.watres.2022.118901] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/19/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
In the face of the growing global water crisis, membrane technology is a promising means of purifying water and wastewater. Silver nanoparticles (AgNPs) have been widely used to improve membrane performance, for antibiofouling, and to aid in photocatalytic degradation, thermal response, and electro-conductivity. However, several critical issues such as short antimicrobial periods, trade-off effects and silver inactivation seriously restrict the engineering application of AgNPs-incorporated membranes. In addition, there is controversy around the use of AgNPs given the toxic preparation process and environmental/biological risks. Hence, it is of great significance to summarize and analyze the recent developments and critical challenges in the use of AgNPs-incorporated membranes in water and wastewater treatment, and to propose potential solutions. We reviewed the different properties and functions of AgNPs and their corresponding applications in AgNPs-incorporated membranes. Recently, multifunctional, novel AgNP-incorporated membranes combined with other functional materials have been developed with high-performance. We further clarified the synergistic mechanisms between AgNPs and these novel nanomaterials and/or polymers, and elucidated their functions and roles in membrane separation. Finally, the critical challenges of AgNPs-incorporated membranes and the proposed solutions were outlined: i) Prolonging the antimicrobial cycle through long-term and controlled AgNPs release; ii) Overcoming the trade-off effect and organic fouling of the AgNPs-incorporated membranes; iii) Preparation of sustainable AgNPs-incorporated membranes; iv) Addressing biotoxicity induced by AgNPs; and v) Deactivation of AgNPs-incorporated membrane. Overall, this review provides a comprehensive discussion of the advancements and challenges of AgNPs-incorporated membranes and guides the development of more robust, multi-functional and sustainable AgNPs-incorporated membranes.
Collapse
Affiliation(s)
- Yuanyuan Yu
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400715, China
| | - Zhongbo Zhou
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400715, China.
| | - Guocheng Huang
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, China
| | - Hong Cheng
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Le Han
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Shanshan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yucheng Chen
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400715, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
7
|
Preparation of Polyvinylidene Fluoride Nano-Filtration Membranes Modified with Functionalized Graphene Oxide for Textile Dye Removal. MEMBRANES 2022; 12:membranes12020224. [PMID: 35207145 PMCID: PMC8879563 DOI: 10.3390/membranes12020224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 02/07/2023]
Abstract
Water scarcity has become one of the most significant problems globally. Membrane technology has gained considerable attention in water treatment technologies. Polymeric nanocomposite membranes are based on several properties, with enhanced water flux, high hydrophilicity and anti-biofouling behavior, improving the membrane performance, flexibility, cost-effectiveness and excellent separation properties. In this study, aminated graphene oxide (NH2-GO)-based PVDF membranes were fabricated using a phase-inversion method for textile dye removal. These fabricated membranes showed the highest water flux at about 170.2 (J/L.h−1.m−2) and 98.2% BSA rejection. Moreover, these membranes removed about 96.6% and 88.5% of methylene blue and methyl orange, respectively. Aminated graphene oxide-based polyvinylidene fluoride (PVDF) membranes emerge as a good membrane material that enhances the membrane performance.
Collapse
|
8
|
Oves M, Ahmar Rauf M, Aslam M, Qari HA, Sonbol H, Ahmad I, Sarwar Zaman G, Saeed M. Green synthesis of silver nanoparticles by Conocarpus Lancifolius plant extract and their antimicrobial and anticancer activities. Saudi J Biol Sci 2022; 29:460-471. [PMID: 35002442 PMCID: PMC8716933 DOI: 10.1016/j.sjbs.2021.09.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/20/2022] Open
Abstract
Due to drug addiction and the emergence of antibiotic resistance in pathogens, the disease load and medication intake have risen worldwide. The alternative treatment for drug-resistant infections is Nano formulation-based antimicrobial agents. The plant extract of Conocarpus Lancifolius fruits was used to synthesize silver nanoparticles in the current study, and it was further employed as an antimicrobial and anticancer agent. Nanoparticles have been characterized by UV-visible spectrometer revealed the notable peak of λmax = 410-442 nm, which confirms the reduction of silver ion to elemental silver nanoparticles, and the biological moieties in the synthesis were further confirmed by FTIR analysis. The stability and crystalline nature of materials were approved by XRD analysis and expected the size of the nanomaterials of 21 to 173 nm analyzed by a nanophox particle-size analyzer. In vitro, synthesized materials act as an antibacterial agent against Streptococcus pneumonia and Staphylococcus aureus. The inhibition zones of 18 and 24 mm have been estimated to be antibacterial activity against both bacteria. The potency of up to 100% of AgNPs for bacterial strains was incubated overnight at 60 μg/ml. Based on our results, biogenic AgNPs reveal significant activity against fungal pathogen Rhizopusus stolonifera and Aspergillus flavus that cause leading infectious diseases. Additionally, nanomaterials were biocompatible and demonstrated the potential anticancer activities against MDA MB-231 cells after 24-hour exposure.
Collapse
Affiliation(s)
- Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdul Aziz University, 21589 Jeddah, Saudi Arabia
| | - Mohd Ahmar Rauf
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-Bind) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Mohammad Aslam
- Center of Excellence in Environmental Studies, King Abdul Aziz University, 21589 Jeddah, Saudi Arabia
| | - Huda A Qari
- Center of Excellence in Environmental Studies, King Abdul Aziz University, 21589 Jeddah, Saudi Arabia
- Department of Biological Science, Faculty of Science, King Abdul-Aziz University, 21589 Jeddah, Saudi Arabia
| | - Hana Sonbol
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Gaffar Sarwar Zaman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
9
|
Aslani R, Namazi H. Simple fabrication of multifunctional hyperbranched copolymer based on l-lysine and citric acid for co-delivery of anticancer drugs to breast cancer cells. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Ng W, Chow W, Ismail H. Hybridization of 5-nitroisatin and silver nanoparticles for boosting the antimicrobial performance of poly(lactic acid)/nanocellulose nanocomposite films. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Khoza M, Kayitesi E, Dlamini BC. Physicochemical Characteristics, Microstructure and Health Promoting Properties of Green Banana Flour. Foods 2021; 10:2894. [PMID: 34945445 PMCID: PMC8700615 DOI: 10.3390/foods10122894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the proximate composition, mineral content, functional properties, molecular structure, in vitro starch digestibility, total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity (DPPH, FRAP) of green banana flour (GBF) cultivars grown in South Africa. With proximate composition, Finger Rose and Pisang Awak had the highest protein (4.33 g/100 g) and fat (0.85 g/100 g) content, respectively. The highest ash content (3.50 g/100 g) occurred with both Grand Naine and FHIA-01 cultivars. Potassium and copper were the most abundant and least minerals, respectively. Pisang Awak cultivar had the highest water absorption capacity (67.11%), while Du Roi had the highest swelling power (0.83 g/g) at 90 °C. Scanning electron microscopy (SEM) images revealed that starch granules from all GBF cultivars were irregular in shape and they had dense surfaces with debris. All the GBF cultivars had similar diffraction patterns with prominent peaks from 15°-24° diffraction angles. The resistant starch (RS) and amylose content of the FHIA-01 cultivar indicates that the GBF has the potential to lower risks of type 2 diabetes and obesity. The highest TPC, TFC and antioxidant activity occurred with the Grande Naine cultivar. Based on their functional characteristics, the Grand Naine and FHIA-01 GBF cultivars could potentially be used as raw materials for bakery products as well as for the fortification of snacks.
Collapse
Affiliation(s)
- Minenhle Khoza
- Department of Biotechnology and Food Technology, Faculty of Science, DFC Campus, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa;
| | - Eugenie Kayitesi
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria 0028, South Africa;
| | - Bhekisisa C. Dlamini
- Department of Biotechnology and Food Technology, Faculty of Science, DFC Campus, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa;
| |
Collapse
|
12
|
Zhang G, Xiao Y, Yin Q, Yan J, Zang C, Zhang H. In Situ Synthesis of Silver Nanoparticles on Amino-Grafted Polyacrylonitrile Fiber and Its Antibacterial Activity. NANOSCALE RESEARCH LETTERS 2021; 16:36. [PMID: 33591425 PMCID: PMC7886948 DOI: 10.1186/s11671-021-03496-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/07/2021] [Indexed: 05/28/2023]
Abstract
In this study, amino hyperbranched polymers (HBP)-grafted polyacrylonitrile (PAN) fiber was prepared through an amidation reaction in an autoclave. The prepared PAN-G-HBP fiber can complex Ag+ through amino groups of amino HBP, and in a hot steaming condition, Ag+ can be converted to Ag0 through the reducibility of HBP. PAN-G-HBP and Ag nanoparticles (NPs)-coated fibers were then characterized through FTIR, UV-VIS DRS, FE-SEM, EDS, XPS and antibacterial measurement. FTIR results confirmed HBP was grafted on the surface of PAN fiber. FE-SEM showed that after grafting with HBP, the average diameter of PAN fibers was amplified. EDS, XPS, and UV-VIS DRS method indicated that under hot steaming condition and with the reducibility of HBP, Ag NPs uniform coating on the PAN-G-HBP. Ag NPs-coated fibers exhibits excellent antibacterial property against Escherichia coli and Staphylococcus aureus. Even under 20 times home washing conditions, the antibacterial reduction of Ag NPs-coated PAN fiber can achieved more than 98.94%.
Collapse
Affiliation(s)
- Guangyu Zhang
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong, 226019 People’s Republic of China
| | - Yao Xiao
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong, 226019 People’s Republic of China
| | - Qitao Yin
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong, 226019 People’s Republic of China
| | - Jiawei Yan
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567 Japan
| | - Chuanfeng Zang
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong, 226019 People’s Republic of China
| | - Huiyun Zhang
- Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100078 People’s Republic of China
| |
Collapse
|
13
|
Gaxela NN, Nomngongo PN, Moutloali RM. Effect of the Zwitterion, p(MAO-DMPA), on the Internal Structure, Fouling Characteristics, and Dye Rejection Mechanism of PVDF Membranes. MEMBRANES 2020; 10:membranes10110323. [PMID: 33142710 PMCID: PMC7693441 DOI: 10.3390/membranes10110323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022]
Abstract
The zwitterion poly-(maleic anhydride-alt-1-octadecene-3-(dimethylamino)-1-propylamine) (p(MAO-DMPA)) synthesized using a ring-opening reaction was used as a poly(vinylidene fluoride) (PVDF) membrane modifier/additive during phase inversion process. The zwitterion was characterized using proton nuclear magnetic resonance (1HNMR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Atomic force microscopy (AFM), field emission scanning electron microscope (SEM), FTIR, and contact angle measurements were taken for the membranes. The effect of the zwitterionization content on membrane performance indicators such as pure water flux, membrane fouling, and dye rejection was investigated. The morphology of the membranes showed that the increase in the zwitterion amount led to a general decrease in pore size with a concomitant increase in the number of membrane surface pores. The surface roughness was not particularly affected by the amount of the additive; however, the internal structure was greatly influenced, leading to varying rejection mechanisms for the larger dye molecule. On the other hand, the wettability of the membranes initially decreased with increasing content to a certain point and then increased as the membrane homogeneity changed at higher zwitterion percentages. Flux and fouling properties were enhanced through the addition of zwitterion compared to the pristine PVDF membrane. The high (>90%) rejection of anionic dye, Congo red, indicated that these membranes behaved as ultrafiltration (UF). In comparison, the cationic dye, rhodamine 6G, was only rejected to <70%, with rejection being predominantly electrostatic-based. This work shows that zwitterion addition imparted good membrane performance to PVDF membranes up to an optimum content whereby membrane homogeneity was compromised, leading to poor performance at its higher loading.
Collapse
Affiliation(s)
- Nelisa Ncumisa Gaxela
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; (N.N.G.); (P.N.N.)
- DSI/Mintek Nanotechnology Innovation Centre, Water Research Node P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; (N.N.G.); (P.N.N.)
- DSI/NRF SARChI: Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Richard Motlhaletsi Moutloali
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; (N.N.G.); (P.N.N.)
- DSI/Mintek Nanotechnology Innovation Centre, Water Research Node P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
- Correspondence:
| |
Collapse
|
14
|
Fang Q, Xu K, Zhang J, Xiong Q, Duan J, Xuan S. Hybrid Polydopamine/Ag Shell-Encapsulated Magnetic Fe 3O 4 Nanosphere with High Antibacterial Activity. MATERIALS 2020; 13:ma13173872. [PMID: 32887245 PMCID: PMC7504453 DOI: 10.3390/ma13173872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022]
Abstract
The bacteria, which usually contaminate water environment, often cause terrible infectious diseases thus seriously threaten people's health. To meet the increasing requirement of the public health care, an easily separable nanomaterial with sustainable anti-bacteria performance is required. This work reports a Fe3O4@PDA/Ag/PDA core-shell nanosphere in which the Ag nanocrystals immobilized on the magnetic carrier are protected by an external polydopamine (PDA) layer. The magnetic hybrid nanospheres are constructed by a tunable coating method and the particle parameters can be effectively controlled by the experimental condition. The antibacterial potential of the nanospheres is evaluable by using the Staphylococcus aureus and Escherichia coli as the models. The results indicate the Fe3O4@PDA/Ag/PDA core-shell nanospheres have a high antibacterial performance by measuring the minimum inhibitory concentration and the minimum bactericidal concentration. Finally, the product is expected to have a sustainable activity because the protecting PDA layer reduce the releasing rate of the Ag+ ions and the materials can be magnetically recovered from the media after the disinfection procedure.
Collapse
Affiliation(s)
- Qunling Fang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (K.X.); (J.Z.); (Q.X.); (J.D.)
- Correspondence: (Q.F.); (S.X.)
| | - Kezhu Xu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (K.X.); (J.Z.); (Q.X.); (J.D.)
| | - Jianfeng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (K.X.); (J.Z.); (Q.X.); (J.D.)
| | - Qingshan Xiong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (K.X.); (J.Z.); (Q.X.); (J.D.)
| | - Jinyu Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (K.X.); (J.Z.); (Q.X.); (J.D.)
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
- Correspondence: (Q.F.); (S.X.)
| |
Collapse
|
15
|
A high flux graphene oxide nanoparticles embedded in PAN nanofiber microfiltration membrane for water treatment applications with improved anti-fouling performance. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-020-00842-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
El-Gendi A, Ghanem AF, Yassin MA, Abdel Rehim MH. Antifouling and antimicrobial polyethersulfone/hyperbranched polyester-amide/Ag composite. RSC Adv 2020; 10:24169-24175. [PMID: 35516212 PMCID: PMC9055127 DOI: 10.1039/d0ra03452e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/12/2020] [Indexed: 11/30/2022] Open
Abstract
This study provided a facile approach for the development of antifouling and antibacterial polyethersulfone (PES) composite film. Mainly, hyperbranched polyester-amide (PESAM) was used as both the reducing and capping agent for the in situ formation of AgNPs. The nanoparticles were intensively investigated using Fourier transform infrared spectroscopy (FTIR), ultra-violet spectroscopy (UV-vis), scanning and transmission electron microscopy (SEM & TEM) and X-ray diffraction (XRD). AgNPs were narrowly distributed with an average particle size of about 6 nm. PESAM was mixed with PES to realize free-standing film using the phase inversion method. The inclusion of PESAM in the composite film significantly improved hydrophilicity as confirmed by the contact angle measurements. Furthermore, SEM and EDX investigations confirmed that PESAM induced the in situ formation of AgNPs not only on the film surface but also inside its macro-voids. The composite film (PES/PESAM/Ag) displayed significant antibacterial potential against Gram positive and Gram negative bacteria. Overall, the described method paves the way towards development of advanced PES composite films with antimicrobial properties for broad application areas that include desalination membranes or active packaging materials.
Collapse
Affiliation(s)
- Ayman El-Gendi
- Chemical Engineering and Pilot Plant Department, Engineering Division, National Research Centre Giza Egypt
| | - Ahmed F Ghanem
- Packaging Materials Department, Chemical Industries Research Division, National Research Centre Giza Egypt
| | - Mohamed A Yassin
- Packaging Materials Department, Chemical Industries Research Division, National Research Centre Giza Egypt
- Advanced Materials and Nanotechnology Lab., Center of Excellence, National Research Centre Giza Egypt
| | - Mona H Abdel Rehim
- Packaging Materials Department, Chemical Industries Research Division, National Research Centre Giza Egypt
| |
Collapse
|