1
|
Li H, Sun X, Liu D, Liu X, Du X, Li S, Xing X, Cheng X, Bi D, Qiu D. Facile Synthesis of Novel Conducting Copolymers Based on N-Furfuryl Pyrrole and 3,4-Ethylenedioxythiophene with Enhanced Optoelectrochemical Performances Towards Electrochromic Application. Molecules 2024; 30:42. [PMID: 39795099 PMCID: PMC11721796 DOI: 10.3390/molecules30010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
In this article, a series of novel conducting copolymers P(FuPy-co-EDOT) are prepared via cyclic voltammetry electropolymerization method by using N-furfuryl pyrrole (FuPy) and 3,4-ethylenedioxythiophene (EDOT) as comonomers. The molecular structure, surface morphology, electrochemical, and optical properties of the resulting copolymers are characterized in detail upon varying the feed ratios of FuPy/EDOT in the range of 1/1 to 1/9. The results demonstrate that the prepared P(FuPy-co-EDOT) copolymers with a higher proportion of EDOT units (FuPy/EDOT: 2/8~1/9) possess good redox activity, tunable optical absorption performances, and low band gaps (1.75~1.86 eV). Spectroelectrochemistry studies indicate that the resulting copolymers with increased EDOT units show strengthened electrochromic characteristics, exhibiting a red-to-green-to-blue multicolor reversible transition, especially for the P(FuPy1-co-EDOT9) copolymer films. They also show increased optical contrast (9~34%), fast response time (0.8~2.4 s), and good coloring efficiency (110~362 cm2 C-1). Additionally, the complementary bilayer P(FuPy-co-EDOT)/PEDOT electrochromic devices (ECDs) are also assembled and evaluated to hold excellent electrochromic switching performances with relatively high optical contrast (25%), rapid response time (0.9 s), and satisfactory coloring efficiency (416 cm2 C-1). Together with the superior open circuit memory and cycling stability, they can be used as a new type of electrochromic material and have considerable prospects as promising candidates for electrochromic devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xinfeng Cheng
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | | | - Dongfang Qiu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
2
|
Tunca N, Maral M, Yildiz E, Sengel SB, Erdem A. Synthesis and characterization of polysaccharide-cryogel and its application to the electrochemical detection of DNA. Mikrochim Acta 2024; 191:499. [PMID: 39088080 PMCID: PMC11294392 DOI: 10.1007/s00604-024-06550-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/06/2024] [Indexed: 08/02/2024]
Abstract
The main goal of our study is to demonstrate the applicability of the PPy-cryogel-modified electrodes for electrochemical detection of DNA. First, a polysaccharide-based cryogel was synthesized. This cryogel was then used as a template for chemical polypyrrole synthesis. This prepared polysaccharide-based conductive cryogel was used for electrochemical biosensing on DNA. Carrageenan (CG) and sodium alginate (SA) polysaccharides, which stand out as biocompatible materials, were used in cryogel synthesis. Electron transfer was accelerated by polypyrrole (PPy) synthesized in cryogel networks. A 2B pencil graphite electrode with a diameter of 2.00 mm was used as a working electrode. The prepared polysaccharide solution was dropped onto a working electrode as a support material to improve the immobilization capacity of biomolecules and frozen to complete the cryogelation step. PPy synthesis was performed on the electrodes whose cryogelation process was completed. In addition, the structures of cryogels synthesized on the electrode surface were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Surface characterization of the modified electrodes was performed by energy-dispersive X-ray spectroscopy (EDX) analysis. Electrochemical determination of fish sperm DNA (fsDNA) was performed using a PPy-cryogel-modified electrode. The use of a porous 3D cryogel intermediate material enhanced the signal by providing a large surface area for the synthesis of PPy and increasing the biomolecule immobilization capacity. The detection limit was 0.98 µg mL-1 in the fsDNA concentration range 2.5-20 µg mL-1. The sensitivity of the DNA biosensor was estimated to 14.8 µA mM-1 cm-2. The stability of the biosensor under certain storage conditions was examined and observed to remain 66.95% up to 45 days.
Collapse
Affiliation(s)
- Nilay Tunca
- The Institute of Natural and Applied Sciences, Biomedical Technologies Department, Ege University, Bornova, 35100, Izmir, Turkey
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100, Izmir, Turkey
- Faculty of Engineering and Architecture, Department of Biomedical Engineering, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey
| | - Meltem Maral
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100, Izmir, Turkey
| | - Esma Yildiz
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100, Izmir, Turkey
| | - Sultan Butun Sengel
- Faculty of Engineering and Architecture, Department of Biomedical Engineering, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey.
| | - Arzum Erdem
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100, Izmir, Turkey.
| |
Collapse
|
3
|
Bober P, Minisy IM, Morávková Z, Hlídková H, Hodan J, Hromádková J, Acharya U. Polypyrrole Aerogels: Efficient Adsorbents of Cr(VI) Ions from Aqueous Solutions. Gels 2023; 9:582. [PMID: 37504461 PMCID: PMC10379293 DOI: 10.3390/gels9070582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Three-dimensional and porous polypyrrole (PPy) aerogels were prepared using a facile two-step procedure in which cryogels were synthesized via the cryopolymerization of pyrrole with iron (III) chloride in the presence of supporting water-soluble polymers (poly(N-vinylpyrrolidone), poly(vinyl alcohol), gelatin, methylcellulose or hydroxypropylcellulose), followed by freeze-drying to obtain aerogels. The choice of supporting polymers was found to affect the morphology, porosity, electrical conductivity, and mechanical properties of PPy aerogels. PPy aerogels were successfully used as adsorbents to remove toxic Cr(VI) ions from aqueous solutions.
Collapse
Affiliation(s)
- Patrycja Bober
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Islam M Minisy
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Zuzana Morávková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Helena Hlídková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Jiří Hodan
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Jiřina Hromádková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Udit Acharya
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| |
Collapse
|
4
|
Milakin KA, Taboubi O, Acharya U, Lhotka M, Pokorný V, Konefał M, Kočková O, Hromádková J, Hodan J, Bober P. Polypyrrole-Barium Ferrite Magnetic Cryogels for Water Purification. Gels 2023; 9:gels9020092. [PMID: 36826262 PMCID: PMC9957020 DOI: 10.3390/gels9020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Magnetic polypyrrole-gelatin-barium ferrite (PPy-G-BaFe) cryogels/aerogels were synthesized by one-step oxidative cryopolymerization of pyrrole in the presence of various fractions of barium ferrite (BaFe) nanoparticles, dispersed in aqueous gelatin solution. The successful incorporation of BaFe into the composites was confirmed by elemental analysis and scanning electron microscopy paired with an energy-dispersive X-ray detector. The maximum achieved content of BaFe in the resulting material was 3.9 wt%. The aerogels with incorporated BaFe had significantly higher specific surface area and conductivity, reaching 19.3 m2 g-1 and 4 × 10-4 S cm-1, respectively, compared to PPy-G aerogel, prepared in the absence of BaFe (7.3 m2 g-1 and 1 × 10-5 S cm-1). The model adsorption experiment using an anionic dye, Reactive Black 5, showed that magnetic PPy-G-BaFe aerogel, prepared at 10 wt% BaFe fraction, had significantly higher adsorption rate and higher adsorption capacity, compared to PPy-G (dye removal fraction 99.6% and 89.1%, respectively, after 23 h). Therefore, the prepared PPy-G-BaFe aerogels are attractive adsorbents for water purification due to their enhanced adsorption performance and the possibility of facilitated separation from solution by a magnetic field.
Collapse
Affiliation(s)
- Konstantin A. Milakin
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Oumayma Taboubi
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Udit Acharya
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Miloslav Lhotka
- Faculty of Chemical Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Václav Pokorný
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Magdalena Konefał
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Olga Kočková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Jiřina Hromádková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Jiří Hodan
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Patrycja Bober
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
- Correspondence:
| |
Collapse
|
5
|
Milakin KA, Gupta S, Pop-Georgievski O, Morávková Z, Acharya U, Taboubi O, Breitenbach S, Gavrilov N, Unterweger C, Bober P. Macroporous nitrogen-containing carbon for electrochemical capacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
In-syringe solid-phase extraction of polycyclic aromatic hydrocarbons using an iron–carboxylate metal–organic framework and hypercrosslinked polymer composite gelatin cryogel–modified cellulose acetate adsorbent. Mikrochim Acta 2022; 189:164. [DOI: 10.1007/s00604-022-05276-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/11/2022] [Indexed: 11/30/2022]
|
7
|
Volkova N, Berillo D. Water Uptake as a Crucial Factor on the Properties of Cryogels of Gelatine Cross-Linked by Dextran Dialdehyde. Gels 2021; 7:159. [PMID: 34698152 PMCID: PMC8544549 DOI: 10.3390/gels7040159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
We investigated the water sorption properties of macroporous cryogels of gelatine (Gel) and dextran dialdehyde (DDA) prepared via cryogelation at 260 K and following the freeze drying processes. Water vapour sorption isotherms for aerogels were studied at 293 K by two independent methods: static-gravimetric and dynamic vapour sorption (DVS) over a water activity range of 0.11-1.0. Experimental data were fitted by use of the Brunauer-Emmett-Teller (BET) and Guggenheim-Anderson-de Boer (GAB) models. The BET model (for a water activity range of 0.1 ≤ p/po ≤ 0.5) was used to calculate the sorption parameters of the studied cryogels (the monolayer capacity, surface area and energy of interaction). In comparison with BET, the GAB model can be applied for the whole range of water activities (0.1 ≤ p/po ≤ 0.95). This model gave an almost perfect correlation between the experimental and calculated sorption isotherms using nonlinear least squares fitting (NLSF). Confocal Laser Scanning Microscopy (CLSM) was used to confirm the structural differences between various DDA:Gel cryogel compositions. Thermogravimetric analysis and DSC data for aerogels DDA:Gel provided information regarding the bonded water loss, relative remaining water content of the material and the temperature of decomposition. Estimation of the amount of bound water in the cryogels after the freeze drying process as well as after the cycle of treatment of cryogels with high humidity and drying was performed using DSC. The results of the DSC determinations showed that cryogels with higher gelatin content had higher levels of bonded water.
Collapse
Affiliation(s)
- Natalia Volkova
- Department of Biotechnology, Lund University, P.O. Box 124, 22 100 Lund, Sweden;
- Department of Solid State Physics, Lund University, P.O. Box 118, 22 100 Lund, Sweden
| | - Dmitriy Berillo
- Department of Biotechnology, Lund University, P.O. Box 124, 22 100 Lund, Sweden;
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| |
Collapse
|
8
|
Stejskal J, Sapurina I, Vilčáková J, Humpolíček P, Truong TH, Shishov MA, Trchová M, Kopecký D, Kolská Z, Prokeš J, Křivka I. Conducting polypyrrole-coated macroporous melamine sponges: a simple toy or an advanced material? CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01776-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Milakin KA, Morávková Z, Acharya U, Kašparová M, Breitenbach S, Taboubi O, Hodan J, Hromádková J, Unterweger C, Humpolíček P, Bober P. Enhancement of conductivity, mechanical and biological properties of polyaniline-poly(N-vinylpyrrolidone) cryogels by phytic acid. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|